Լուծել x-ի համար
x=-\frac{1}{2}=-0.5
x=3
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
\left(x-2\right)\left(3-x\right)-\left(3x-1\right)\left(x-1\right)=-2\left(x-2\right)\left(3x-1\right)
x փոփոխականը չի կարող հավասար լինել \frac{1}{3},2 արժեքներից որևէ մեկին, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Հավասարման երկու կողմերը բազմապատկեք \left(x-2\right)\left(3x-1\right)-ով՝ 3x-1,x-2-ի ընդհանուր ամենափոքր բազմապատիկով:
5x-x^{2}-6-\left(3x-1\right)\left(x-1\right)=-2\left(x-2\right)\left(3x-1\right)
Օգտագործեք բաժանիչ հատկությունը՝ x-2-ը 3-x-ով բազմապատկելու և նման պայմանները համակցելու համար:
5x-x^{2}-6-\left(3x^{2}-4x+1\right)=-2\left(x-2\right)\left(3x-1\right)
Օգտագործեք բաժանիչ հատկությունը՝ 3x-1-ը x-1-ով բազմապատկելու և նման պայմանները համակցելու համար:
5x-x^{2}-6-3x^{2}+4x-1=-2\left(x-2\right)\left(3x-1\right)
3x^{2}-4x+1-ի հակադարձը գտնելու համար գտեք յուրաքանչյուր տերմինի հակադարձը:
5x-4x^{2}-6+4x-1=-2\left(x-2\right)\left(3x-1\right)
Համակցեք -x^{2} և -3x^{2} և ստացեք -4x^{2}:
9x-4x^{2}-6-1=-2\left(x-2\right)\left(3x-1\right)
Համակցեք 5x և 4x և ստացեք 9x:
9x-4x^{2}-7=-2\left(x-2\right)\left(3x-1\right)
Հանեք 1 -6-ից և ստացեք -7:
9x-4x^{2}-7=\left(-2x+4\right)\left(3x-1\right)
Օգտագործեք բաժանիչ հատկությունը՝ -2 x-2-ով բազմապատկելու համար:
9x-4x^{2}-7=-6x^{2}+14x-4
Օգտագործեք բաժանիչ հատկությունը՝ -2x+4-ը 3x-1-ով բազմապատկելու և նման պայմանները համակցելու համար:
9x-4x^{2}-7+6x^{2}=14x-4
Հավելել 6x^{2}-ը երկու կողմերում:
9x+2x^{2}-7=14x-4
Համակցեք -4x^{2} և 6x^{2} և ստացեք 2x^{2}:
9x+2x^{2}-7-14x=-4
Հանեք 14x երկու կողմերից:
-5x+2x^{2}-7=-4
Համակցեք 9x և -14x և ստացեք -5x:
-5x+2x^{2}-7+4=0
Հավելել 4-ը երկու կողմերում:
-5x+2x^{2}-3=0
Գումարեք -7 և 4 և ստացեք -3:
2x^{2}-5x-3=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 2-ը a-ով, -5-ը b-ով և -3-ը c-ով:
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
-5-ի քառակուսի:
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Բազմապատկեք -4 անգամ 2:
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Բազմապատկեք -8 անգամ -3:
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Գումարեք 25 24-ին:
x=\frac{-\left(-5\right)±7}{2\times 2}
Հանեք 49-ի քառակուսի արմատը:
x=\frac{5±7}{2\times 2}
-5 թվի հակադրությունը 5 է:
x=\frac{5±7}{4}
Բազմապատկեք 2 անգամ 2:
x=\frac{12}{4}
Այժմ լուծել x=\frac{5±7}{4} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 5 7-ին:
x=3
Բաժանեք 12-ը 4-ի վրա:
x=-\frac{2}{4}
Այժմ լուծել x=\frac{5±7}{4} հավասարումը, երբ ±-ը մինուս է: Հանեք 7 5-ից:
x=-\frac{1}{2}
Նվազեցնել \frac{-2}{4} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=3 x=-\frac{1}{2}
Հավասարումն այժմ լուծված է:
\left(x-2\right)\left(3-x\right)-\left(3x-1\right)\left(x-1\right)=-2\left(x-2\right)\left(3x-1\right)
x փոփոխականը չի կարող հավասար լինել \frac{1}{3},2 արժեքներից որևէ մեկին, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Հավասարման երկու կողմերը բազմապատկեք \left(x-2\right)\left(3x-1\right)-ով՝ 3x-1,x-2-ի ընդհանուր ամենափոքր բազմապատիկով:
5x-x^{2}-6-\left(3x-1\right)\left(x-1\right)=-2\left(x-2\right)\left(3x-1\right)
Օգտագործեք բաժանիչ հատկությունը՝ x-2-ը 3-x-ով բազմապատկելու և նման պայմանները համակցելու համար:
5x-x^{2}-6-\left(3x^{2}-4x+1\right)=-2\left(x-2\right)\left(3x-1\right)
Օգտագործեք բաժանիչ հատկությունը՝ 3x-1-ը x-1-ով բազմապատկելու և նման պայմանները համակցելու համար:
5x-x^{2}-6-3x^{2}+4x-1=-2\left(x-2\right)\left(3x-1\right)
3x^{2}-4x+1-ի հակադարձը գտնելու համար գտեք յուրաքանչյուր տերմինի հակադարձը:
5x-4x^{2}-6+4x-1=-2\left(x-2\right)\left(3x-1\right)
Համակցեք -x^{2} և -3x^{2} և ստացեք -4x^{2}:
9x-4x^{2}-6-1=-2\left(x-2\right)\left(3x-1\right)
Համակցեք 5x և 4x և ստացեք 9x:
9x-4x^{2}-7=-2\left(x-2\right)\left(3x-1\right)
Հանեք 1 -6-ից և ստացեք -7:
9x-4x^{2}-7=\left(-2x+4\right)\left(3x-1\right)
Օգտագործեք բաժանիչ հատկությունը՝ -2 x-2-ով բազմապատկելու համար:
9x-4x^{2}-7=-6x^{2}+14x-4
Օգտագործեք բաժանիչ հատկությունը՝ -2x+4-ը 3x-1-ով բազմապատկելու և նման պայմանները համակցելու համար:
9x-4x^{2}-7+6x^{2}=14x-4
Հավելել 6x^{2}-ը երկու կողմերում:
9x+2x^{2}-7=14x-4
Համակցեք -4x^{2} և 6x^{2} և ստացեք 2x^{2}:
9x+2x^{2}-7-14x=-4
Հանեք 14x երկու կողմերից:
-5x+2x^{2}-7=-4
Համակցեք 9x և -14x և ստացեք -5x:
-5x+2x^{2}=-4+7
Հավելել 7-ը երկու կողմերում:
-5x+2x^{2}=3
Գումարեք -4 և 7 և ստացեք 3:
2x^{2}-5x=3
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
\frac{2x^{2}-5x}{2}=\frac{3}{2}
Բաժանեք երկու կողմերը 2-ի:
x^{2}-\frac{5}{2}x=\frac{3}{2}
Բաժանելով 2-ի՝ հետարկվում է 2-ով բազմապատկումը:
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
Բաժանեք -\frac{5}{2}-ը՝ x անդամի գործակիցը 2-ի և ստացեք -\frac{5}{4}-ը: Ապա գումարեք -\frac{5}{4}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Բարձրացրեք քառակուսի -\frac{5}{4}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
Գումարեք \frac{3}{2} \frac{25}{16}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
Գործոն x^{2}-\frac{5}{2}x+\frac{25}{16}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
Պարզեցնել:
x=3 x=-\frac{1}{2}
Գումարեք \frac{5}{4} հավասարման երկու կողմին:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}