Լուծել x-ի համար
x=-\frac{1}{2}=-0.5
x=5
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
2x^{2}-9x-5=0
x փոփոխականը չի կարող հավասար լինել -3-ի, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Բազմապատկեք հավասարման երկու կողմերը x+3-ով:
a+b=-9 ab=2\left(-5\right)=-10
Հավասարումը լուծելու համար դուրս բերեք ձախ հատվածը՝ խմբավորման միջոցով։ Նախ, ձախ հատվածը պետք է գրվի այսպես՝ 2x^{2}+ax+bx-5։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
1,-10 2,-5
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն բացասական է, բացասական թիվը ավելի մեծ բացարձակ արժեք ունի, քան դրականը։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը -10 է։
1-10=-9 2-5=-3
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=-10 b=1
Լուծումը այն զույգն է, որը տալիս է -9 գումար։
\left(2x^{2}-10x\right)+\left(x-5\right)
Նորից գրեք 2x^{2}-9x-5-ը \left(2x^{2}-10x\right)+\left(x-5\right)-ի տեսքով:
2x\left(x-5\right)+x-5
Ֆակտորացրեք 2x-ը 2x^{2}-10x-ում։
\left(x-5\right)\left(2x+1\right)
Ֆակտորացրեք x-5 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
x=5 x=-\frac{1}{2}
Հավասարման լուծումները գտնելու համար լուծեք x-5=0-ն և 2x+1=0-ն։
2x^{2}-9x-5=0
x փոփոխականը չի կարող հավասար լինել -3-ի, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Բազմապատկեք հավասարման երկու կողմերը x+3-ով:
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 2-ը a-ով, -9-ը b-ով և -5-ը c-ով:
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-5\right)}}{2\times 2}
-9-ի քառակուսի:
x=\frac{-\left(-9\right)±\sqrt{81-8\left(-5\right)}}{2\times 2}
Բազմապատկեք -4 անգամ 2:
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2\times 2}
Բազմապատկեք -8 անգամ -5:
x=\frac{-\left(-9\right)±\sqrt{121}}{2\times 2}
Գումարեք 81 40-ին:
x=\frac{-\left(-9\right)±11}{2\times 2}
Հանեք 121-ի քառակուսի արմատը:
x=\frac{9±11}{2\times 2}
-9 թվի հակադրությունը 9 է:
x=\frac{9±11}{4}
Բազմապատկեք 2 անգամ 2:
x=\frac{20}{4}
Այժմ լուծել x=\frac{9±11}{4} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 9 11-ին:
x=5
Բաժանեք 20-ը 4-ի վրա:
x=-\frac{2}{4}
Այժմ լուծել x=\frac{9±11}{4} հավասարումը, երբ ±-ը մինուս է: Հանեք 11 9-ից:
x=-\frac{1}{2}
Նվազեցնել \frac{-2}{4} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 2-ը:
x=5 x=-\frac{1}{2}
Հավասարումն այժմ լուծված է:
2x^{2}-9x-5=0
x փոփոխականը չի կարող հավասար լինել -3-ի, քանի որ բաժանումը զրոյի վրա սահմանված չէ: Բազմապատկեք հավասարման երկու կողմերը x+3-ով:
2x^{2}-9x=5
Հավելել 5-ը երկու կողմերում: Ցանկացած թվին գումարելով զրո ստացվում է նույն թիվը:
\frac{2x^{2}-9x}{2}=\frac{5}{2}
Բաժանեք երկու կողմերը 2-ի:
x^{2}-\frac{9}{2}x=\frac{5}{2}
Բաժանելով 2-ի՝ հետարկվում է 2-ով բազմապատկումը:
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{9}{4}\right)^{2}
Բաժանեք -\frac{9}{2}-ը՝ x անդամի գործակիցը 2-ի և ստացեք -\frac{9}{4}-ը: Ապա գումարեք -\frac{9}{4}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{5}{2}+\frac{81}{16}
Բարձրացրեք քառակուսի -\frac{9}{4}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{121}{16}
Գումարեք \frac{5}{2} \frac{81}{16}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
\left(x-\frac{9}{4}\right)^{2}=\frac{121}{16}
Գործոն x^{2}-\frac{9}{2}x+\frac{81}{16}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-\frac{9}{4}=\frac{11}{4} x-\frac{9}{4}=-\frac{11}{4}
Պարզեցնել:
x=5 x=-\frac{1}{2}
Գումարեք \frac{9}{4} հավասարման երկու կողմին:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}