Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image
Իրական մաս
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Բազմապատկեք համարիչն ու հայտարարը հայտարարի բաղադրյալ խոնարհումով արժեքով՝ 1+i:
\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}}
Բազմապատկումը կարող է վերածվել քառակուսիների տարբերության հետևյալ կանոնի միջոցով՝ \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}:
\frac{\left(1+i\right)\left(1+i\right)}{2}
Ըստ սահմանման՝ i^{2} արժեքը -1 է: Հաշվել հայտարարը:
\frac{1\times 1+i+i+i^{2}}{2}
Բազմապատկեք 1+i և 1+i բաղադրյալ թվերը ինչպես երկանդամները:
\frac{1\times 1+i+i-1}{2}
Ըստ սահմանման՝ i^{2} արժեքը -1 է:
\frac{1+i+i-1}{2}
Կատարել բազմապատկումներ 1\times 1+i+i-1-ի մեջ:
\frac{1-1+\left(1+1\right)i}{2}
Համակցել իրական և կեղծ մասերը 1+i+i-1-ում:
\frac{2i}{2}
Կատարել գումարումներ 1-1+\left(1+1\right)i-ի մեջ:
i
Բաժանեք 2i 2-ի և ստացեք i:
Re(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Բազմապատկեք \frac{1+i}{1-i}-ի համարիչն ու հայտարարը հայտարարի բաղադրյալ խոնարհումով՝ 1+i:
Re(\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}})
Բազմապատկումը կարող է վերածվել քառակուսիների տարբերության հետևյալ կանոնի միջոցով՝ \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}:
Re(\frac{\left(1+i\right)\left(1+i\right)}{2})
Ըստ սահմանման՝ i^{2} արժեքը -1 է: Հաշվել հայտարարը:
Re(\frac{1\times 1+i+i+i^{2}}{2})
Բազմապատկեք 1+i և 1+i բաղադրյալ թվերը ինչպես երկանդամները:
Re(\frac{1\times 1+i+i-1}{2})
Ըստ սահմանման՝ i^{2} արժեքը -1 է:
Re(\frac{1+i+i-1}{2})
Կատարել բազմապատկումներ 1\times 1+i+i-1-ի մեջ:
Re(\frac{1-1+\left(1+1\right)i}{2})
Համակցել իրական և կեղծ մասերը 1+i+i-1-ում:
Re(\frac{2i}{2})
Կատարել գումարումներ 1-1+\left(1+1\right)i-ի մեջ:
Re(i)
Բաժանեք 2i 2-ի և ստացեք i:
0
i-ի իրական մասը 0 է: