Prijeđi na glavni sadržaj
Microsoft
|
Math Solver
Riješiti
Praksa
Igrati
Teme
Predalgebra
Značiti
Način
Najveći zajednički faktor
Najmanji uobičajeni višekratnik
Redoslijed operacija
Razlomaka
Mješoviti razlomci
Primarna faktorizacija
Eksponente
Radikali
Algebra
Kombiniraj slične pojmove
Riješi za varijablu
Faktor
Proširiti
Procijeni razlomke
Linearne jednadžbe
Kvadratne jednadžbe
Nejednakosti
Sustavi jednadžbi
Matrice
Trigonometrija
Pojednostaviti
Procijeniti
Grafova
Rješavanje jednadžbi
Račun
Derivata
Integrali
Granice
Ulazi algebre
Ulazi trigonometrije
Ulazi računa
Ulazi matrice
Riješiti
Praksa
Igrati
Teme
Predalgebra
Značiti
Način
Najveći zajednički faktor
Najmanji uobičajeni višekratnik
Redoslijed operacija
Razlomaka
Mješoviti razlomci
Primarna faktorizacija
Eksponente
Radikali
Algebra
Kombiniraj slične pojmove
Riješi za varijablu
Faktor
Proširiti
Procijeni razlomke
Linearne jednadžbe
Kvadratne jednadžbe
Nejednakosti
Sustavi jednadžbi
Matrice
Trigonometrija
Pojednostaviti
Procijeniti
Grafova
Rješavanje jednadžbi
Račun
Derivata
Integrali
Granice
Ulazi algebre
Ulazi trigonometrije
Ulazi računa
Ulazi matrice
Osnovni
algebra
trigonometrija
račun
statistika
Matrice
Znakova
Izračunaj x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Grafikon
Iscrtaj obje strane u 2D-u
Iscrtaj u 2D-u
Kviz
Trigonometry
\sin ( x ) - cos ( x ) = 0
Slični problemi iz pretraživanja weba
Solve \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} ?
https://socratic.org/questions/58f66b0eb72cff6d065f28c0
\displaystyle{x}=\frac{\pi}{{4}}+{n}\pi Explanation: We have: \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} Which we can rearrange as follows: \displaystyle\therefore{\sin{{x}}}={\cos{{x}}} ...
I confused with trigonometry. \sin x - \cos x = 1
https://math.stackexchange.com/q/2837121
\frac{1}{\sqrt2}\sin{x}-\frac{1}{\sqrt2}\cos{x}=\frac{1}{\sqrt2} or \sin\left(x-45^{\circ}\right)=\sin45^{\circ}, which gives x-45^{\circ}=45^{\circ}+360^{\circ}k, where k is an integer ...
How do you solve \displaystyle{\sin{{2}}}{x}-{\cos{{x}}}={0} ?
https://socratic.org/questions/how-do-you-solve-sin-2x-cos-x-0
Use the important double angle identity \displaystyle{\sin{{2}}}{x}={2}{\sin{{x}}}{\cos{{x}}} to start the solving process. Explanation: \displaystyle{2}{\sin{{x}}}{\cos{{x}}}-{\cos{{x}}}={0} ...
How to solve \sin 3x - \cos x = 0
https://www.quora.com/How-do-I-solve-sin-3x-cos-x-0
\begin{align} &\ \ \sin 3x - \cos x = 0 \\ \Leftrightarrow &\ \ \sin 3x - \sin \left( \dfrac{\pi}{2}-x \right) = 0 \\ \Leftrightarrow &\ \ 2 \cos\dfrac{3x + \left( \frac{\pi}{2}-x \right)}{2} \sin\dfrac{3x - \left( \frac{\pi}{2}-x \right)}{2} = 0 \\ \Leftrightarrow &\ \ 2 \cos \dfrac{2x + \frac{\pi}{2}}{2} \sin \dfrac{4x - \frac{\pi}{2}}{2} = 0 \\ \Leftrightarrow &\ \ \dfrac{2x + \frac{\pi}{2}}{2} = \dfrac{\pi}{2} + k\pi, k \in \mathbb{Z} \text{ or } \dfrac{4x - \frac{\pi}{2}}{2} = k\pi, k \in \mathbb{Z} \\ \Leftrightarrow &\ \ x = \dfrac{\pi}{4} + k\pi, k \in \mathbb{Z} \text{ or } x = \dfrac{\pi}{8} + \dfrac{k\pi}{2}, k \in \mathbb{Z} \end{align}
Find the general solution to \sin(4x)-\cos(x)=0 [closed]
https://math.stackexchange.com/questions/1735307/find-the-general-solution-to-sin4x-cosx-0
\sin(4x)−\cos(x)=0 2\sin(2x)\cos(2x)-\cos(x)=0 4\sin(x)\cos(x)(1-2\sin^2(x))-\cos(x)=0 One possible solution is \cos(x)=0 4\sin(x)(1-2\sin^2(x))=1 8\sin^3(x)-4\sin(x)+1=0 Now, let \sin(x)=m ...
Prove that \sin x - x\cos x = 0 has only one solution in [-\frac{\pi}{2}, \frac{\pi}{2}]
https://math.stackexchange.com/q/1355080/166535
Let f(x)=\sin x-x\cos x. You have f'(x)=x\sin x. Since \sin x has the same sign as x for x\in[-\pi/2,\pi/2], we know that f'(x)\geq0 in this interval and f'(x)>0 for x\in[-\pi/2,\pi/2]\setminus\{0\} ...
Više Predmeta
Dijeliti
Kopija
Kopirano u međuspremnik
Slični problemi
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Povratak na vrh