Izračunaj
\frac{3\left(29x-7\right)}{\left(x-3\right)\left(3x+1\right)}
Faktor
\frac{3\left(29x-7\right)}{\left(x-3\right)\left(3x+1\right)}
Grafikon
Dijeliti
Kopirano u međuspremnik
\frac{24\left(3x+1\right)}{\left(x-3\right)\left(3x+1\right)}+\frac{15\left(x-3\right)}{\left(x-3\right)\left(3x+1\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva x-3 i 3x+1 jest \left(x-3\right)\left(3x+1\right). Pomnožite \frac{24}{x-3} i \frac{3x+1}{3x+1}. Pomnožite \frac{15}{3x+1} i \frac{x-3}{x-3}.
\frac{24\left(3x+1\right)+15\left(x-3\right)}{\left(x-3\right)\left(3x+1\right)}
Budući da \frac{24\left(3x+1\right)}{\left(x-3\right)\left(3x+1\right)} i \frac{15\left(x-3\right)}{\left(x-3\right)\left(3x+1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{72x+24+15x-45}{\left(x-3\right)\left(3x+1\right)}
Pomnožite izraz 24\left(3x+1\right)+15\left(x-3\right).
\frac{87x-21}{\left(x-3\right)\left(3x+1\right)}
Kombinirajte slične izraze u 72x+24+15x-45.
\frac{87x-21}{3x^{2}-8x-3}
Proširivanje broja \left(x-3\right)\left(3x+1\right).