Izračunaj x
x=\frac{10-4y}{3}
Izračunaj y
y=-\frac{3x}{4}+\frac{5}{2}
Grafikon
Dijeliti
Kopirano u međuspremnik
y-1=-\frac{3}{4}x+\frac{3}{2}
Koristite svojstvo distributivnosti da biste pomnožili -\frac{3}{4} s x-2.
-\frac{3}{4}x+\frac{3}{2}=y-1
Zamijenite strane tako da svi izrazi s nepoznanicama budu s lijeve strane.
-\frac{3}{4}x=y-1-\frac{3}{2}
Oduzmite \frac{3}{2} od obiju strana.
-\frac{3}{4}x=y-\frac{5}{2}
Oduzmite \frac{3}{2} od -1 da biste dobili -\frac{5}{2}.
\frac{-\frac{3}{4}x}{-\frac{3}{4}}=\frac{y-\frac{5}{2}}{-\frac{3}{4}}
Podijelite obje strane jednadžbe s -\frac{3}{4}, što je isto kao da pomnožite obje strane recipročnim razlomkom.
x=\frac{y-\frac{5}{2}}{-\frac{3}{4}}
Dijeljenjem s -\frac{3}{4} poništava se množenje s -\frac{3}{4}.
x=\frac{10-4y}{3}
Podijelite y-\frac{5}{2} s -\frac{3}{4} tako da pomnožite y-\frac{5}{2} s brojem recipročnim broju -\frac{3}{4}.
y-1=-\frac{3}{4}x+\frac{3}{2}
Koristite svojstvo distributivnosti da biste pomnožili -\frac{3}{4} s x-2.
y=-\frac{3}{4}x+\frac{3}{2}+1
Dodajte 1 na obje strane.
y=-\frac{3}{4}x+\frac{5}{2}
Dodajte \frac{3}{2} broju 1 da biste dobili \frac{5}{2}.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}