Faktor
\left(x-4\right)\left(x-2\right)\left(x+5\right)
Izračunaj
\left(x-4\right)\left(x-2\right)\left(x+5\right)
Grafikon
Dijeliti
Kopirano u međuspremnik
\left(x+5\right)\left(x^{2}-6x+8\right)
Prema teoremu racionalnog korijena, svi racionalni korijeni polinomijalnog oblika su u obliku \frac{p}{q}, gdje p dijeli konstantni termin 40 i q dijeli glavni koeficijent 1. Jedan od takvih korijena je -5. Rastavite polinom na faktore tako da ga podijelite sa x+5.
a+b=-6 ab=1\times 8=8
Razmotrite x^{2}-6x+8. Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao x^{2}+ax+bx+8. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
-1,-8 -2,-4
Budući da je ab pozitivni, a i b imaju isti znak. Budući da je a+b negativan, a i b su negativni. Navedi sve kao cijeli broj koji daje 8 proizvoda.
-1-8=-9 -2-4=-6
Izračunaj zbroj za svaki par.
a=-4 b=-2
Rješenje je par koji daje zbroj -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Izrazite x^{2}-6x+8 kao \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Faktor x u prvom i -2 u drugoj grupi.
\left(x-4\right)\left(x-2\right)
Faktor uobičajeni termin x-4 korištenjem distribucije svojstva.
\left(x-4\right)\left(x-2\right)\left(x+5\right)
Prepravljanje čitavog izraza rastavljenog na faktore.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}