Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

-4x^{2}-4x=0
Kombinirajte x^{2} i -5x^{2} da biste dobili -4x^{2}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-4\right)}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite -4 s a, -4 s b i 0 s c.
x=\frac{-\left(-4\right)±4}{2\left(-4\right)}
Izračunajte kvadratni korijen od \left(-4\right)^{2}.
x=\frac{4±4}{2\left(-4\right)}
Broj suprotan broju -4 jest 4.
x=\frac{4±4}{-8}
Pomnožite 2 i -4.
x=\frac{8}{-8}
Sada riješite jednadžbu x=\frac{4±4}{-8} kad je ± plus. Dodaj 4 broju 4.
x=-1
Podijelite 8 s -8.
x=\frac{0}{-8}
Sada riješite jednadžbu x=\frac{4±4}{-8} kad je ± minus. Oduzmite 4 od 4.
x=0
Podijelite 0 s -8.
x=-1 x=0
Jednadžba je sada riješena.
-4x^{2}-4x=0
Kombinirajte x^{2} i -5x^{2} da biste dobili -4x^{2}.
\frac{-4x^{2}-4x}{-4}=\frac{0}{-4}
Podijelite obje strane sa -4.
x^{2}+\left(-\frac{4}{-4}\right)x=\frac{0}{-4}
Dijeljenjem s -4 poništava se množenje s -4.
x^{2}+x=\frac{0}{-4}
Podijelite -4 s -4.
x^{2}+x=0
Podijelite 0 s -4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
Podijelite 1, koeficijent izraza x, s 2 da biste dobili \frac{1}{2}. Zatim objema stranama jednadžbe pridodajte \frac{1}{2} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}+x+\frac{1}{4}=\frac{1}{4}
Kvadrirajte \frac{1}{2} tako da kvadrirate brojnik i nazivnik razlomka.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
Faktor x^{2}+x+\frac{1}{4}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
Pojednostavnite.
x=0 x=-1
Oduzmite \frac{1}{2} od obiju strana jednadžbe.