Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

a+b=-11 ab=18
Da biste riješili jednadžbu, faktor x^{2}-11x+18 pomoću x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formule. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
-1,-18 -2,-9 -3,-6
Budući da je ab pozitivni, a i b imaju isti znak. Budući da je a+b negativan, a i b su negativni. Navedi sve kao cijeli broj koji daje 18 proizvoda.
-1-18=-19 -2-9=-11 -3-6=-9
Izračunaj zbroj za svaki par.
a=-9 b=-2
Rješenje je par koji daje zbroj -11.
\left(x-9\right)\left(x-2\right)
Prepišite izraz \left(x+a\right)\left(x+b\right) rastavljen na faktore pomoću dobivenih vrijednosti.
x=9 x=2
Da biste pronašli rješenja jednadžbe, riješite x-9=0 i x-2=0.
a+b=-11 ab=1\times 18=18
Da biste riješili jednadžbu, grupiranjem rastavite lijevu stranu na faktore. Najprije je potrebno prepisati lijevu stranu kao x^{2}+ax+bx+18. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
-1,-18 -2,-9 -3,-6
Budući da je ab pozitivni, a i b imaju isti znak. Budući da je a+b negativan, a i b su negativni. Navedi sve kao cijeli broj koji daje 18 proizvoda.
-1-18=-19 -2-9=-11 -3-6=-9
Izračunaj zbroj za svaki par.
a=-9 b=-2
Rješenje je par koji daje zbroj -11.
\left(x^{2}-9x\right)+\left(-2x+18\right)
Izrazite x^{2}-11x+18 kao \left(x^{2}-9x\right)+\left(-2x+18\right).
x\left(x-9\right)-2\left(x-9\right)
Faktor x u prvom i -2 u drugoj grupi.
\left(x-9\right)\left(x-2\right)
Faktor uobičajeni termin x-9 korištenjem distribucije svojstva.
x=9 x=2
Da biste pronašli rješenja jednadžbe, riješite x-9=0 i x-2=0.
x^{2}-11x+18=0
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 18}}{2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 1 s a, -11 s b i 18 s c.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 18}}{2}
Kvadrirajte -11.
x=\frac{-\left(-11\right)±\sqrt{121-72}}{2}
Pomnožite -4 i 18.
x=\frac{-\left(-11\right)±\sqrt{49}}{2}
Dodaj 121 broju -72.
x=\frac{-\left(-11\right)±7}{2}
Izračunajte kvadratni korijen od 49.
x=\frac{11±7}{2}
Broj suprotan broju -11 jest 11.
x=\frac{18}{2}
Sada riješite jednadžbu x=\frac{11±7}{2} kad je ± plus. Dodaj 11 broju 7.
x=9
Podijelite 18 s 2.
x=\frac{4}{2}
Sada riješite jednadžbu x=\frac{11±7}{2} kad je ± minus. Oduzmite 7 od 11.
x=2
Podijelite 4 s 2.
x=9 x=2
Jednadžba je sada riješena.
x^{2}-11x+18=0
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
x^{2}-11x+18-18=-18
Oduzmite 18 od obiju strana jednadžbe.
x^{2}-11x=-18
Oduzimanje 18 samog od sebe dobiva se 0.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-18+\left(-\frac{11}{2}\right)^{2}
Podijelite -11, koeficijent izraza x, s 2 da biste dobili -\frac{11}{2}. Zatim objema stranama jednadžbe pridodajte -\frac{11}{2} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}-11x+\frac{121}{4}=-18+\frac{121}{4}
Kvadrirajte -\frac{11}{2} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}-11x+\frac{121}{4}=\frac{49}{4}
Dodaj -18 broju \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{49}{4}
Faktor x^{2}-11x+\frac{121}{4}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x-\frac{11}{2}=\frac{7}{2} x-\frac{11}{2}=-\frac{7}{2}
Pojednostavnite.
x=9 x=2
Dodajte \frac{11}{2} objema stranama jednadžbe.