Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

x^{2}+x-20=0
Oduzmite 20 od obiju strana.
a+b=1 ab=-20
Da biste riješili jednadžbu, faktor x^{2}+x-20 pomoću x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formule. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
-1,20 -2,10 -4,5
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b pozitivan, pozitivni broj ima veću apsolutnu vrijednost od negativnog. Navedi sve kao cijeli broj koji daje -20 proizvoda.
-1+20=19 -2+10=8 -4+5=1
Izračunaj zbroj za svaki par.
a=-4 b=5
Rješenje je par koji daje zbroj 1.
\left(x-4\right)\left(x+5\right)
Prepišite izraz \left(x+a\right)\left(x+b\right) rastavljen na faktore pomoću dobivenih vrijednosti.
x=4 x=-5
Da biste pronašli rješenja jednadžbe, riješite x-4=0 i x+5=0.
x^{2}+x-20=0
Oduzmite 20 od obiju strana.
a+b=1 ab=1\left(-20\right)=-20
Da biste riješili jednadžbu, grupiranjem rastavite lijevu stranu na faktore. Najprije je potrebno prepisati lijevu stranu kao x^{2}+ax+bx-20. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
-1,20 -2,10 -4,5
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b pozitivan, pozitivni broj ima veću apsolutnu vrijednost od negativnog. Navedi sve kao cijeli broj koji daje -20 proizvoda.
-1+20=19 -2+10=8 -4+5=1
Izračunaj zbroj za svaki par.
a=-4 b=5
Rješenje je par koji daje zbroj 1.
\left(x^{2}-4x\right)+\left(5x-20\right)
Izrazite x^{2}+x-20 kao \left(x^{2}-4x\right)+\left(5x-20\right).
x\left(x-4\right)+5\left(x-4\right)
Faktor x u prvom i 5 u drugoj grupi.
\left(x-4\right)\left(x+5\right)
Faktor uobičajeni termin x-4 korištenjem distribucije svojstva.
x=4 x=-5
Da biste pronašli rješenja jednadžbe, riješite x-4=0 i x+5=0.
x^{2}+x=20
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x^{2}+x-20=20-20
Oduzmite 20 od obiju strana jednadžbe.
x^{2}+x-20=0
Oduzimanje 20 samog od sebe dobiva se 0.
x=\frac{-1±\sqrt{1^{2}-4\left(-20\right)}}{2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 1 s a, 1 s b i -20 s c.
x=\frac{-1±\sqrt{1-4\left(-20\right)}}{2}
Kvadrirajte 1.
x=\frac{-1±\sqrt{1+80}}{2}
Pomnožite -4 i -20.
x=\frac{-1±\sqrt{81}}{2}
Dodaj 1 broju 80.
x=\frac{-1±9}{2}
Izračunajte kvadratni korijen od 81.
x=\frac{8}{2}
Sada riješite jednadžbu x=\frac{-1±9}{2} kad je ± plus. Dodaj -1 broju 9.
x=4
Podijelite 8 s 2.
x=-\frac{10}{2}
Sada riješite jednadžbu x=\frac{-1±9}{2} kad je ± minus. Oduzmite 9 od -1.
x=-5
Podijelite -10 s 2.
x=4 x=-5
Jednadžba je sada riješena.
x^{2}+x=20
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=20+\left(\frac{1}{2}\right)^{2}
Podijelite 1, koeficijent izraza x, s 2 da biste dobili \frac{1}{2}. Zatim objema stranama jednadžbe pridodajte \frac{1}{2} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}+x+\frac{1}{4}=20+\frac{1}{4}
Kvadrirajte \frac{1}{2} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}+x+\frac{1}{4}=\frac{81}{4}
Dodaj 20 broju \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{81}{4}
Faktor x^{2}+x+\frac{1}{4}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x+\frac{1}{2}=\frac{9}{2} x+\frac{1}{2}=-\frac{9}{2}
Pojednostavnite.
x=4 x=-5
Oduzmite \frac{1}{2} od obiju strana jednadžbe.