Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

x^{2}+9x+9=0
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-9±\sqrt{9^{2}-4\times 9}}{2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 1 s a, 9 s b i 9 s c.
x=\frac{-9±\sqrt{81-4\times 9}}{2}
Kvadrirajte 9.
x=\frac{-9±\sqrt{81-36}}{2}
Pomnožite -4 i 9.
x=\frac{-9±\sqrt{45}}{2}
Dodaj 81 broju -36.
x=\frac{-9±3\sqrt{5}}{2}
Izračunajte kvadratni korijen od 45.
x=\frac{3\sqrt{5}-9}{2}
Sada riješite jednadžbu x=\frac{-9±3\sqrt{5}}{2} kad je ± plus. Dodaj -9 broju 3\sqrt{5}.
x=\frac{-3\sqrt{5}-9}{2}
Sada riješite jednadžbu x=\frac{-9±3\sqrt{5}}{2} kad je ± minus. Oduzmite 3\sqrt{5} od -9.
x=\frac{3\sqrt{5}-9}{2} x=\frac{-3\sqrt{5}-9}{2}
Jednadžba je sada riješena.
x^{2}+9x+9=0
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
x^{2}+9x+9-9=-9
Oduzmite 9 od obiju strana jednadžbe.
x^{2}+9x=-9
Oduzimanje 9 samog od sebe dobiva se 0.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=-9+\left(\frac{9}{2}\right)^{2}
Podijelite 9, koeficijent izraza x, s 2 da biste dobili \frac{9}{2}. Zatim objema stranama jednadžbe pridodajte \frac{9}{2} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}+9x+\frac{81}{4}=-9+\frac{81}{4}
Kvadrirajte \frac{9}{2} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}+9x+\frac{81}{4}=\frac{45}{4}
Dodaj -9 broju \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{45}{4}
Faktor x^{2}+9x+\frac{81}{4}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x+\frac{9}{2}=\frac{3\sqrt{5}}{2} x+\frac{9}{2}=-\frac{3\sqrt{5}}{2}
Pojednostavnite.
x=\frac{3\sqrt{5}-9}{2} x=\frac{-3\sqrt{5}-9}{2}
Oduzmite \frac{9}{2} od obiju strana jednadžbe.