Prijeđi na glavni sadržaj
Faktor
Tick mark Image
Izračunaj
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

x^{2}+7x-169=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\left(-169\right)}}{2}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-7±\sqrt{49-4\left(-169\right)}}{2}
Kvadrirajte 7.
x=\frac{-7±\sqrt{49+676}}{2}
Pomnožite -4 i -169.
x=\frac{-7±\sqrt{725}}{2}
Dodaj 49 broju 676.
x=\frac{-7±5\sqrt{29}}{2}
Izračunajte kvadratni korijen od 725.
x=\frac{5\sqrt{29}-7}{2}
Sada riješite jednadžbu x=\frac{-7±5\sqrt{29}}{2} kad je ± plus. Dodaj -7 broju 5\sqrt{29}.
x=\frac{-5\sqrt{29}-7}{2}
Sada riješite jednadžbu x=\frac{-7±5\sqrt{29}}{2} kad je ± minus. Oduzmite 5\sqrt{29} od -7.
x^{2}+7x-169=\left(x-\frac{5\sqrt{29}-7}{2}\right)\left(x-\frac{-5\sqrt{29}-7}{2}\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite \frac{-7+5\sqrt{29}}{2} s x_{1} i \frac{-7-5\sqrt{29}}{2} s x_{2}.