Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

a+b=6 ab=-7
Da biste riješili jednadžbu, faktor x^{2}+6x-7 pomoću x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formule. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
a=-1 b=7
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b pozitivan, pozitivni broj ima veću apsolutnu vrijednost od negativnog. Jedini je takav par sistemsko rješenje.
\left(x-1\right)\left(x+7\right)
Prepišite izraz \left(x+a\right)\left(x+b\right) rastavljen na faktore pomoću dobivenih vrijednosti.
x=1 x=-7
Da biste pronašli rješenja jednadžbe, riješite x-1=0 i x+7=0.
a+b=6 ab=1\left(-7\right)=-7
Da biste riješili jednadžbu, grupiranjem rastavite lijevu stranu na faktore. Najprije je potrebno prepisati lijevu stranu kao x^{2}+ax+bx-7. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
a=-1 b=7
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b pozitivan, pozitivni broj ima veću apsolutnu vrijednost od negativnog. Jedini je takav par sistemsko rješenje.
\left(x^{2}-x\right)+\left(7x-7\right)
Izrazite x^{2}+6x-7 kao \left(x^{2}-x\right)+\left(7x-7\right).
x\left(x-1\right)+7\left(x-1\right)
Faktor x u prvom i 7 u drugoj grupi.
\left(x-1\right)\left(x+7\right)
Faktor uobičajeni termin x-1 korištenjem distribucije svojstva.
x=1 x=-7
Da biste pronašli rješenja jednadžbe, riješite x-1=0 i x+7=0.
x^{2}+6x-7=0
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 1 s a, 6 s b i -7 s c.
x=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
Kvadrirajte 6.
x=\frac{-6±\sqrt{36+28}}{2}
Pomnožite -4 i -7.
x=\frac{-6±\sqrt{64}}{2}
Dodaj 36 broju 28.
x=\frac{-6±8}{2}
Izračunajte kvadratni korijen od 64.
x=\frac{2}{2}
Sada riješite jednadžbu x=\frac{-6±8}{2} kad je ± plus. Dodaj -6 broju 8.
x=1
Podijelite 2 s 2.
x=-\frac{14}{2}
Sada riješite jednadžbu x=\frac{-6±8}{2} kad je ± minus. Oduzmite 8 od -6.
x=-7
Podijelite -14 s 2.
x=1 x=-7
Jednadžba je sada riješena.
x^{2}+6x-7=0
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
x^{2}+6x-7-\left(-7\right)=-\left(-7\right)
Dodajte 7 objema stranama jednadžbe.
x^{2}+6x=-\left(-7\right)
Oduzimanje -7 samog od sebe dobiva se 0.
x^{2}+6x=7
Oduzmite -7 od 0.
x^{2}+6x+3^{2}=7+3^{2}
Podijelite 6, koeficijent izraza x, s 2 da biste dobili 3. Zatim objema stranama jednadžbe pridodajte 3 na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}+6x+9=7+9
Kvadrirajte 3.
x^{2}+6x+9=16
Dodaj 7 broju 9.
\left(x+3\right)^{2}=16
Faktor x^{2}+6x+9. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{16}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x+3=4 x+3=-4
Pojednostavnite.
x=1 x=-7
Oduzmite 3 od obiju strana jednadžbe.