Prijeđi na glavni sadržaj
Izračunaj x (complex solution)
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

x^{2}+3-x=2
Oduzmite x od obiju strana.
x^{2}+3-x-2=0
Oduzmite 2 od obiju strana.
x^{2}+1-x=0
Oduzmite 2 od 3 da biste dobili 1.
x^{2}-x+1=0
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 1 s a, -1 s b i 1 s c.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2}
Dodaj 1 broju -4.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2}
Izračunajte kvadratni korijen od -3.
x=\frac{1±\sqrt{3}i}{2}
Broj suprotan broju -1 jest 1.
x=\frac{1+\sqrt{3}i}{2}
Sada riješite jednadžbu x=\frac{1±\sqrt{3}i}{2} kad je ± plus. Dodaj 1 broju i\sqrt{3}.
x=\frac{-\sqrt{3}i+1}{2}
Sada riješite jednadžbu x=\frac{1±\sqrt{3}i}{2} kad je ± minus. Oduzmite i\sqrt{3} od 1.
x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
Jednadžba je sada riješena.
x^{2}+3-x=2
Oduzmite x od obiju strana.
x^{2}-x=2-3
Oduzmite 3 od obiju strana.
x^{2}-x=-1
Oduzmite 3 od 2 da biste dobili -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-1+\left(-\frac{1}{2}\right)^{2}
Podijelite -1, koeficijent izraza x, s 2 da biste dobili -\frac{1}{2}. Zatim objema stranama jednadžbe pridodajte -\frac{1}{2} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}-x+\frac{1}{4}=-1+\frac{1}{4}
Kvadrirajte -\frac{1}{2} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}-x+\frac{1}{4}=-\frac{3}{4}
Dodaj -1 broju \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{3}{4}
Faktor x^{2}-x+\frac{1}{4}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x-\frac{1}{2}=\frac{\sqrt{3}i}{2} x-\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Pojednostavnite.
x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
Dodajte \frac{1}{2} objema stranama jednadžbe.