Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

x^{2}+2x+5-8=0
Oduzmite 8 od obiju strana.
x^{2}+2x-3=0
Oduzmite 8 od 5 da biste dobili -3.
a+b=2 ab=-3
Da biste riješili jednadžbu, faktor x^{2}+2x-3 pomoću x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formule. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
a=-1 b=3
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b pozitivan, pozitivni broj ima veću apsolutnu vrijednost od negativnog. Jedini je takav par sistemsko rješenje.
\left(x-1\right)\left(x+3\right)
Prepišite izraz \left(x+a\right)\left(x+b\right) rastavljen na faktore pomoću dobivenih vrijednosti.
x=1 x=-3
Da biste pronašli rješenja jednadžbe, riješite x-1=0 i x+3=0.
x^{2}+2x+5-8=0
Oduzmite 8 od obiju strana.
x^{2}+2x-3=0
Oduzmite 8 od 5 da biste dobili -3.
a+b=2 ab=1\left(-3\right)=-3
Da biste riješili jednadžbu, grupiranjem rastavite lijevu stranu na faktore. Najprije je potrebno prepisati lijevu stranu kao x^{2}+ax+bx-3. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
a=-1 b=3
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b pozitivan, pozitivni broj ima veću apsolutnu vrijednost od negativnog. Jedini je takav par sistemsko rješenje.
\left(x^{2}-x\right)+\left(3x-3\right)
Izrazite x^{2}+2x-3 kao \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Faktor x u prvom i 3 u drugoj grupi.
\left(x-1\right)\left(x+3\right)
Faktor uobičajeni termin x-1 korištenjem distribucije svojstva.
x=1 x=-3
Da biste pronašli rješenja jednadžbe, riješite x-1=0 i x+3=0.
x^{2}+2x+5=8
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x^{2}+2x+5-8=8-8
Oduzmite 8 od obiju strana jednadžbe.
x^{2}+2x+5-8=0
Oduzimanje 8 samog od sebe dobiva se 0.
x^{2}+2x-3=0
Oduzmite 8 od 5.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 1 s a, 2 s b i -3 s c.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
Kvadrirajte 2.
x=\frac{-2±\sqrt{4+12}}{2}
Pomnožite -4 i -3.
x=\frac{-2±\sqrt{16}}{2}
Dodaj 4 broju 12.
x=\frac{-2±4}{2}
Izračunajte kvadratni korijen od 16.
x=\frac{2}{2}
Sada riješite jednadžbu x=\frac{-2±4}{2} kad je ± plus. Dodaj -2 broju 4.
x=1
Podijelite 2 s 2.
x=-\frac{6}{2}
Sada riješite jednadžbu x=\frac{-2±4}{2} kad je ± minus. Oduzmite 4 od -2.
x=-3
Podijelite -6 s 2.
x=1 x=-3
Jednadžba je sada riješena.
x^{2}+2x+5=8
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
x^{2}+2x+5-5=8-5
Oduzmite 5 od obiju strana jednadžbe.
x^{2}+2x=8-5
Oduzimanje 5 samog od sebe dobiva se 0.
x^{2}+2x=3
Oduzmite 5 od 8.
x^{2}+2x+1^{2}=3+1^{2}
Podijelite 2, koeficijent izraza x, s 2 da biste dobili 1. Zatim objema stranama jednadžbe pridodajte 1 na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}+2x+1=3+1
Kvadrirajte 1.
x^{2}+2x+1=4
Dodaj 3 broju 1.
\left(x+1\right)^{2}=4
Faktor x^{2}+2x+1. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x+1=2 x+1=-2
Pojednostavnite.
x=1 x=-3
Oduzmite 1 od obiju strana jednadžbe.