Prijeđi na glavni sadržaj
Faktor
Tick mark Image
Izračunaj
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

n^{2}+9n+4=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
n=\frac{-9±\sqrt{9^{2}-4\times 4}}{2}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
n=\frac{-9±\sqrt{81-4\times 4}}{2}
Kvadrirajte 9.
n=\frac{-9±\sqrt{81-16}}{2}
Pomnožite -4 i 4.
n=\frac{-9±\sqrt{65}}{2}
Dodaj 81 broju -16.
n=\frac{\sqrt{65}-9}{2}
Sada riješite jednadžbu n=\frac{-9±\sqrt{65}}{2} kad je ± plus. Dodaj -9 broju \sqrt{65}.
n=\frac{-\sqrt{65}-9}{2}
Sada riješite jednadžbu n=\frac{-9±\sqrt{65}}{2} kad je ± minus. Oduzmite \sqrt{65} od -9.
n^{2}+9n+4=\left(n-\frac{\sqrt{65}-9}{2}\right)\left(n-\frac{-\sqrt{65}-9}{2}\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite \frac{-9+\sqrt{65}}{2} s x_{1} i \frac{-9-\sqrt{65}}{2} s x_{2}.