Faktor
\left(d-5\right)\left(d+1\right)
Izračunaj
\left(d-5\right)\left(d+1\right)
Dijeliti
Kopirano u međuspremnik
a+b=-4 ab=1\left(-5\right)=-5
Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao d^{2}+ad+bd-5. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
a=-5 b=1
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivne vrijednosti. Jedini je takav par sistemsko rješenje.
\left(d^{2}-5d\right)+\left(d-5\right)
Izrazite d^{2}-4d-5 kao \left(d^{2}-5d\right)+\left(d-5\right).
d\left(d-5\right)+d-5
Izlučite d iz d^{2}-5d.
\left(d-5\right)\left(d+1\right)
Faktor uobičajeni termin d-5 korištenjem distribucije svojstva.
d^{2}-4d-5=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
d=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
d=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Kvadrirajte -4.
d=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Pomnožite -4 i -5.
d=\frac{-\left(-4\right)±\sqrt{36}}{2}
Dodaj 16 broju 20.
d=\frac{-\left(-4\right)±6}{2}
Izračunajte kvadratni korijen od 36.
d=\frac{4±6}{2}
Broj suprotan broju -4 jest 4.
d=\frac{10}{2}
Sada riješite jednadžbu d=\frac{4±6}{2} kad je ± plus. Dodaj 4 broju 6.
d=5
Podijelite 10 s 2.
d=-\frac{2}{2}
Sada riješite jednadžbu d=\frac{4±6}{2} kad je ± minus. Oduzmite 6 od 4.
d=-1
Podijelite -2 s 2.
d^{2}-4d-5=\left(d-5\right)\left(d-\left(-1\right)\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 5 s x_{1} i -1 s x_{2}.
d^{2}-4d-5=\left(d-5\right)\left(d+1\right)
Pojednostavnite sve izraze obrasca p-\left(-q\right) na p+q.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}