Prijeđi na glavni sadržaj
Faktor
Tick mark Image
Izračunaj
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

p+q=2 pq=1\left(-8\right)=-8
Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao a^{2}+pa+qa-8. Da biste pronašli p i q, postavite sustav koji će biti riješiti.
-1,8 -2,4
Budući da je pq negativan, p i q suprotnu znakovi. Budući da je p+q pozitivan, pozitivni broj ima veću apsolutnu vrijednost od negativnog. Navedi sve kao cijeli broj koji daje -8 proizvoda.
-1+8=7 -2+4=2
Izračunaj zbroj za svaki par.
p=-2 q=4
Rješenje je par koji daje zbroj 2.
\left(a^{2}-2a\right)+\left(4a-8\right)
Izrazite a^{2}+2a-8 kao \left(a^{2}-2a\right)+\left(4a-8\right).
a\left(a-2\right)+4\left(a-2\right)
Faktor a u prvom i 4 u drugoj grupi.
\left(a-2\right)\left(a+4\right)
Faktor uobičajeni termin a-2 korištenjem distribucije svojstva.
a^{2}+2a-8=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
a=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
a=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
Kvadrirajte 2.
a=\frac{-2±\sqrt{4+32}}{2}
Pomnožite -4 i -8.
a=\frac{-2±\sqrt{36}}{2}
Dodaj 4 broju 32.
a=\frac{-2±6}{2}
Izračunajte kvadratni korijen od 36.
a=\frac{4}{2}
Sada riješite jednadžbu a=\frac{-2±6}{2} kad je ± plus. Dodaj -2 broju 6.
a=2
Podijelite 4 s 2.
a=-\frac{8}{2}
Sada riješite jednadžbu a=\frac{-2±6}{2} kad je ± minus. Oduzmite 6 od -2.
a=-4
Podijelite -8 s 2.
a^{2}+2a-8=\left(a-2\right)\left(a-\left(-4\right)\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 2 s x_{1} i -4 s x_{2}.
a^{2}+2a-8=\left(a-2\right)\left(a+4\right)
Pojednostavnite sve izraze obrasca p-\left(-q\right) na p+q.