Prijeđi na glavni sadržaj
Faktor
Tick mark Image
Izračunaj
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

x^{2}-6x+9
Preuredite polinom da biste ga pretvorili u standardan oblik. Poredajte izraze redoslijedom od najvećeg do najmanjeg eksponenta.
a+b=-6 ab=1\times 9=9
Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao x^{2}+ax+bx+9. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
-1,-9 -3,-3
Budući da je ab pozitivni, a i b imaju isti znak. Budući da je a+b negativan, a i b su negativni. Navedi sve kao cijeli broj koji daje 9 proizvoda.
-1-9=-10 -3-3=-6
Izračunaj zbroj za svaki par.
a=-3 b=-3
Rješenje je par koji daje zbroj -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Izrazite x^{2}-6x+9 kao \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Faktor x u prvom i -3 u drugoj grupi.
\left(x-3\right)\left(x-3\right)
Faktor uobičajeni termin x-3 korištenjem distribucije svojstva.
\left(x-3\right)^{2}
Ponovno napišite kao kvadrat binoma.
factor(x^{2}-6x+9)
Ovaj trinom ima oblik kvadrata trinoma, možda pomnoženog zajedničkim faktorom. Kvadrati trinoma mogu se faktorirati vađenjem kvadratnog korijena prvog i zadnjeg izraza.
\sqrt{9}=3
Pronađite kvadratni korijen drugog izraza, 9.
\left(x-3\right)^{2}
Kvadrat trinoma je kvadrat binoma koji je zbroj razlike kvadratnih korijena prvog i zadnjeg izraza, dok predznak određuje predznak srednjeg izraza u kvadratu trinoma.
x^{2}-6x+9=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Kvadrirajte -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Pomnožite -4 i 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
Dodaj 36 broju -36.
x=\frac{-\left(-6\right)±0}{2}
Izračunajte kvadratni korijen od 0.
x=\frac{6±0}{2}
Broj suprotan broju -6 jest 6.
x^{2}-6x+9=\left(x-3\right)\left(x-3\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 3 s x_{1} i 3 s x_{2}.