Prijeđi na glavni sadržaj
Faktor
Tick mark Image
Izračunaj
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

9x^{2}+18x+1=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
x=\frac{-18±\sqrt{18^{2}-4\times 9}}{2\times 9}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-18±\sqrt{324-4\times 9}}{2\times 9}
Kvadrirajte 18.
x=\frac{-18±\sqrt{324-36}}{2\times 9}
Pomnožite -4 i 9.
x=\frac{-18±\sqrt{288}}{2\times 9}
Dodaj 324 broju -36.
x=\frac{-18±12\sqrt{2}}{2\times 9}
Izračunajte kvadratni korijen od 288.
x=\frac{-18±12\sqrt{2}}{18}
Pomnožite 2 i 9.
x=\frac{12\sqrt{2}-18}{18}
Sada riješite jednadžbu x=\frac{-18±12\sqrt{2}}{18} kad je ± plus. Dodaj -18 broju 12\sqrt{2}.
x=\frac{2\sqrt{2}}{3}-1
Podijelite -18+12\sqrt{2} s 18.
x=\frac{-12\sqrt{2}-18}{18}
Sada riješite jednadžbu x=\frac{-18±12\sqrt{2}}{18} kad je ± minus. Oduzmite 12\sqrt{2} od -18.
x=-\frac{2\sqrt{2}}{3}-1
Podijelite -18-12\sqrt{2} s 18.
9x^{2}+18x+1=9\left(x-\left(\frac{2\sqrt{2}}{3}-1\right)\right)\left(x-\left(-\frac{2\sqrt{2}}{3}-1\right)\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite -1+\frac{2\sqrt{2}}{3} s x_{1} i -1-\frac{2\sqrt{2}}{3} s x_{2}.