Faktor
\left(y-3\right)\left(y+3\right)\left(-y^{2}+3y-9\right)\left(y^{2}+3y+9\right)
Izračunaj
\left(9-y^{2}\right)\left(\left(y^{2}+9\right)^{2}-9y^{2}\right)
Grafikon
Dijeliti
Kopirano u međuspremnik
\left(27+y^{3}\right)\left(27-y^{3}\right)
Izrazite 729-y^{6} kao 27^{2}-\left(-y^{3}\right)^{2}. Razlika kvadrata može se rastaviti faktore pomoću pravila: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(y^{3}+27\right)\left(-y^{3}+27\right)
Promijenite redoslijed izraza.
\left(y+3\right)\left(y^{2}-3y+9\right)
Razmotrite y^{3}+27. Izrazite y^{3}+27 kao y^{3}+3^{3}. Zbroj kocke može se rastaviti faktore pomoću pravila: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(y-3\right)\left(-y^{2}-3y-9\right)
Razmotrite -y^{3}+27. Prema teoremu racionalnog korijena, svi racionalni korijeni polinomijalnog oblika su u obliku \frac{p}{q}, gdje p dijeli konstantni termin 27 i q dijeli glavni koeficijent -1. Jedan od takvih korijena je 3. Rastavite polinom na faktore tako da ga podijelite sa y-3.
\left(-y^{2}-3y-9\right)\left(y-3\right)\left(y+3\right)\left(y^{2}-3y+9\right)
Prepravljanje čitavog izraza rastavljenog na faktore. Sljedeći polinomi nisu rastavljeni na faktore jer nemaju racionalne korijene: -y^{2}-3y-9,y^{2}-3y+9.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}