Faktor
\left(2x-3\right)\left(3x+1\right)
Izračunaj
\left(2x-3\right)\left(3x+1\right)
Grafikon
Dijeliti
Kopirano u međuspremnik
a+b=-7 ab=6\left(-3\right)=-18
Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao 6x^{2}+ax+bx-3. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
1,-18 2,-9 3,-6
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivne vrijednosti. Navedi sve kao cijeli broj koji daje -18 proizvoda.
1-18=-17 2-9=-7 3-6=-3
Izračunaj zbroj za svaki par.
a=-9 b=2
Rješenje je par koji daje zbroj -7.
\left(6x^{2}-9x\right)+\left(2x-3\right)
Izrazite 6x^{2}-7x-3 kao \left(6x^{2}-9x\right)+\left(2x-3\right).
3x\left(2x-3\right)+2x-3
Izlučite 3x iz 6x^{2}-9x.
\left(2x-3\right)\left(3x+1\right)
Faktor uobičajeni termin 2x-3 korištenjem distribucije svojstva.
6x^{2}-7x-3=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
Kvadrirajte -7.
x=\frac{-\left(-7\right)±\sqrt{49-24\left(-3\right)}}{2\times 6}
Pomnožite -4 i 6.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 6}
Pomnožite -24 i -3.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 6}
Dodaj 49 broju 72.
x=\frac{-\left(-7\right)±11}{2\times 6}
Izračunajte kvadratni korijen od 121.
x=\frac{7±11}{2\times 6}
Broj suprotan broju -7 jest 7.
x=\frac{7±11}{12}
Pomnožite 2 i 6.
x=\frac{18}{12}
Sada riješite jednadžbu x=\frac{7±11}{12} kad je ± plus. Dodaj 7 broju 11.
x=\frac{3}{2}
Skratite razlomak \frac{18}{12} na najmanje vrijednosti tako da izlučite i poništite 6.
x=-\frac{4}{12}
Sada riješite jednadžbu x=\frac{7±11}{12} kad je ± minus. Oduzmite 11 od 7.
x=-\frac{1}{3}
Skratite razlomak \frac{-4}{12} na najmanje vrijednosti tako da izlučite i poništite 4.
6x^{2}-7x-3=6\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{1}{3}\right)\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite \frac{3}{2} s x_{1} i -\frac{1}{3} s x_{2}.
6x^{2}-7x-3=6\left(x-\frac{3}{2}\right)\left(x+\frac{1}{3}\right)
Pojednostavnite sve izraze obrasca p-\left(-q\right) na p+q.
6x^{2}-7x-3=6\times \frac{2x-3}{2}\left(x+\frac{1}{3}\right)
Oduzmite \frac{3}{2} od x traženjem zajedničkog nazivnika i oduzimanjem brojnika. Zatim pokratite razlomak ako je moguće.
6x^{2}-7x-3=6\times \frac{2x-3}{2}\times \frac{3x+1}{3}
Dodajte \frac{1}{3} broju x pronalaženjem zajedničkog nazivnika i zbrajanjem brojnika. Zatim pokratite razlomak ako je to moguće.
6x^{2}-7x-3=6\times \frac{\left(2x-3\right)\left(3x+1\right)}{2\times 3}
Pomnožite \frac{2x-3}{2} i \frac{3x+1}{3} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom. Zatim pokratite razlomak ako je to moguće.
6x^{2}-7x-3=6\times \frac{\left(2x-3\right)\left(3x+1\right)}{6}
Pomnožite 2 i 3.
6x^{2}-7x-3=\left(2x-3\right)\left(3x+1\right)
Poništite najveći zajednički djelitelj 6 u vrijednostima 6 i 6.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}