Prijeđi na glavni sadržaj
Faktor
Tick mark Image
Izračunaj
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

x\left(49x-24\right)
Izlučite x.
49x^{2}-24x=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 49}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-24\right)±24}{2\times 49}
Izračunajte kvadratni korijen od \left(-24\right)^{2}.
x=\frac{24±24}{2\times 49}
Broj suprotan broju -24 jest 24.
x=\frac{24±24}{98}
Pomnožite 2 i 49.
x=\frac{48}{98}
Sada riješite jednadžbu x=\frac{24±24}{98} kad je ± plus. Dodaj 24 broju 24.
x=\frac{24}{49}
Skratite razlomak \frac{48}{98} na najmanje vrijednosti tako da izlučite i poništite 2.
x=\frac{0}{98}
Sada riješite jednadžbu x=\frac{24±24}{98} kad je ± minus. Oduzmite 24 od 24.
x=0
Podijelite 0 s 98.
49x^{2}-24x=49\left(x-\frac{24}{49}\right)x
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite \frac{24}{49} s x_{1} i 0 s x_{2}.
49x^{2}-24x=49\times \frac{49x-24}{49}x
Oduzmite \frac{24}{49} od x traženjem zajedničkog nazivnika i oduzimanjem brojnika. Zatim pokratite razlomak ako je moguće.
49x^{2}-24x=\left(49x-24\right)x
Poništite najveći zajednički djelitelj 49 u vrijednostima 49 i 49.