Izračunaj x
x = \frac{\sqrt{7} + 1}{2} \approx 1,822875656
x=\frac{1-\sqrt{7}}{2}\approx -0,822875656
Grafikon
Dijeliti
Kopirano u međuspremnik
4x^{2}-6-4x=0
Oduzmite 4x od obiju strana.
4x^{2}-4x-6=0
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-6\right)}}{2\times 4}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 4 s a, -4 s b i -6 s c.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-6\right)}}{2\times 4}
Kvadrirajte -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-6\right)}}{2\times 4}
Pomnožite -4 i 4.
x=\frac{-\left(-4\right)±\sqrt{16+96}}{2\times 4}
Pomnožite -16 i -6.
x=\frac{-\left(-4\right)±\sqrt{112}}{2\times 4}
Dodaj 16 broju 96.
x=\frac{-\left(-4\right)±4\sqrt{7}}{2\times 4}
Izračunajte kvadratni korijen od 112.
x=\frac{4±4\sqrt{7}}{2\times 4}
Broj suprotan broju -4 jest 4.
x=\frac{4±4\sqrt{7}}{8}
Pomnožite 2 i 4.
x=\frac{4\sqrt{7}+4}{8}
Sada riješite jednadžbu x=\frac{4±4\sqrt{7}}{8} kad je ± plus. Dodaj 4 broju 4\sqrt{7}.
x=\frac{\sqrt{7}+1}{2}
Podijelite 4+4\sqrt{7} s 8.
x=\frac{4-4\sqrt{7}}{8}
Sada riješite jednadžbu x=\frac{4±4\sqrt{7}}{8} kad je ± minus. Oduzmite 4\sqrt{7} od 4.
x=\frac{1-\sqrt{7}}{2}
Podijelite 4-4\sqrt{7} s 8.
x=\frac{\sqrt{7}+1}{2} x=\frac{1-\sqrt{7}}{2}
Jednadžba je sada riješena.
4x^{2}-6-4x=0
Oduzmite 4x od obiju strana.
4x^{2}-4x=6
Dodajte 6 na obje strane. Sve plus nula jednako je sebi.
\frac{4x^{2}-4x}{4}=\frac{6}{4}
Podijelite obje strane sa 4.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{6}{4}
Dijeljenjem s 4 poništava se množenje s 4.
x^{2}-x=\frac{6}{4}
Podijelite -4 s 4.
x^{2}-x=\frac{3}{2}
Skratite razlomak \frac{6}{4} na najmanje vrijednosti tako da izlučite i poništite 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{2}\right)^{2}
Podijelite -1, koeficijent izraza x, s 2 da biste dobili -\frac{1}{2}. Zatim objema stranama jednadžbe pridodajte -\frac{1}{2} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}-x+\frac{1}{4}=\frac{3}{2}+\frac{1}{4}
Kvadrirajte -\frac{1}{2} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}-x+\frac{1}{4}=\frac{7}{4}
Dodajte \frac{3}{2} broju \frac{1}{4} pronalaženjem zajedničkog nazivnika i zbrajanjem brojnika. Zatim pokratite razlomak ako je to moguće.
\left(x-\frac{1}{2}\right)^{2}=\frac{7}{4}
Faktor x^{2}-x+\frac{1}{4}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{7}{4}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x-\frac{1}{2}=\frac{\sqrt{7}}{2} x-\frac{1}{2}=-\frac{\sqrt{7}}{2}
Pojednostavnite.
x=\frac{\sqrt{7}+1}{2} x=\frac{1-\sqrt{7}}{2}
Dodajte \frac{1}{2} objema stranama jednadžbe.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}