Prijeđi na glavni sadržaj
Faktor
Tick mark Image
Izračunaj
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

4\left(x^{2}+x-2\right)
Izlučite 4.
a+b=1 ab=1\left(-2\right)=-2
Razmotrite x^{2}+x-2. Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao x^{2}+ax+bx-2. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
a=-1 b=2
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b pozitivan, pozitivni broj ima veću apsolutnu vrijednost od negativnog. Jedini je takav par sistemsko rješenje.
\left(x^{2}-x\right)+\left(2x-2\right)
Izrazite x^{2}+x-2 kao \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
Faktor x u prvom i 2 u drugoj grupi.
\left(x-1\right)\left(x+2\right)
Faktor uobičajeni termin x-1 korištenjem distribucije svojstva.
4\left(x-1\right)\left(x+2\right)
Prepravljanje čitavog izraza rastavljenog na faktore.
4x^{2}+4x-8=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-4±\sqrt{16-4\times 4\left(-8\right)}}{2\times 4}
Kvadrirajte 4.
x=\frac{-4±\sqrt{16-16\left(-8\right)}}{2\times 4}
Pomnožite -4 i 4.
x=\frac{-4±\sqrt{16+128}}{2\times 4}
Pomnožite -16 i -8.
x=\frac{-4±\sqrt{144}}{2\times 4}
Dodaj 16 broju 128.
x=\frac{-4±12}{2\times 4}
Izračunajte kvadratni korijen od 144.
x=\frac{-4±12}{8}
Pomnožite 2 i 4.
x=\frac{8}{8}
Sada riješite jednadžbu x=\frac{-4±12}{8} kad je ± plus. Dodaj -4 broju 12.
x=1
Podijelite 8 s 8.
x=-\frac{16}{8}
Sada riješite jednadžbu x=\frac{-4±12}{8} kad je ± minus. Oduzmite 12 od -4.
x=-2
Podijelite -16 s 8.
4x^{2}+4x-8=4\left(x-1\right)\left(x-\left(-2\right)\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 1 s x_{1} i -2 s x_{2}.
4x^{2}+4x-8=4\left(x-1\right)\left(x+2\right)
Pojednostavnite sve izraze obrasca p-\left(-q\right) na p+q.