Izračunaj x (complex solution)
x=\frac{i\sqrt{6\sqrt{31}+33}}{3}\approx 2,716341211i
x=-\frac{i\sqrt{6\sqrt{31}+33}}{3}\approx -0-2,716341211i
x=-\frac{\sqrt{6\sqrt{31}-33}}{3}\approx -0,212547035
x=\frac{\sqrt{6\sqrt{31}-33}}{3}\approx 0,212547035
Izračunaj x
x=-\frac{\sqrt{6\sqrt{31}-33}}{3}\approx -0,212547035
x=\frac{\sqrt{6\sqrt{31}-33}}{3}\approx 0,212547035
Grafikon
Dijeliti
Kopirano u međuspremnik
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
Koristite svojstvo distributivnosti da biste pomnožili 4 s x^{2}+1.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
Koristite svojstvo distributivnosti da biste pomnožili 4x^{2}+4 s 2x^{2}+1 i kombinirali slične izraze.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
Upotrijebite binomni teorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} da biste proširili \left(x^{2}-1\right)^{2}.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
Da biste izračunali potenciju potencije, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
Koristite svojstvo distributivnosti da biste pomnožili 5 s x^{4}-2x^{2}+1.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Oduzmite 5x^{4} od obiju strana.
3x^{4}+12x^{2}+4=-10x^{2}+5
Kombinirajte 8x^{4} i -5x^{4} da biste dobili 3x^{4}.
3x^{4}+12x^{2}+4+10x^{2}=5
Dodajte 10x^{2} na obje strane.
3x^{4}+22x^{2}+4=5
Kombinirajte 12x^{2} i 10x^{2} da biste dobili 22x^{2}.
3x^{4}+22x^{2}+4-5=0
Oduzmite 5 od obiju strana.
3x^{4}+22x^{2}-1=0
Oduzmite 5 od 4 da biste dobili -1.
3t^{2}+22t-1=0
Zamijenite t za x^{2}.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. U kvadratnoj formuli zamijenite 3 s a, 22 s b i -1 s c.
t=\frac{-22±4\sqrt{31}}{6}
Izračunajte.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
Riješite jednadžbu t=\frac{-22±4\sqrt{31}}{6} kad je ± plus i kad je ± minus.
x=-\sqrt{\frac{2\sqrt{31}-11}{3}} x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-i\sqrt{\frac{2\sqrt{31}+11}{3}} x=i\sqrt{\frac{2\sqrt{31}+11}{3}}
Od x=t^{2}, rješenja su dohvaćena tako da procjena x=±\sqrt{t} za svaku t.
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
Koristite svojstvo distributivnosti da biste pomnožili 4 s x^{2}+1.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
Koristite svojstvo distributivnosti da biste pomnožili 4x^{2}+4 s 2x^{2}+1 i kombinirali slične izraze.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
Upotrijebite binomni teorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} da biste proširili \left(x^{2}-1\right)^{2}.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
Da biste izračunali potenciju potencije, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
Koristite svojstvo distributivnosti da biste pomnožili 5 s x^{4}-2x^{2}+1.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Oduzmite 5x^{4} od obiju strana.
3x^{4}+12x^{2}+4=-10x^{2}+5
Kombinirajte 8x^{4} i -5x^{4} da biste dobili 3x^{4}.
3x^{4}+12x^{2}+4+10x^{2}=5
Dodajte 10x^{2} na obje strane.
3x^{4}+22x^{2}+4=5
Kombinirajte 12x^{2} i 10x^{2} da biste dobili 22x^{2}.
3x^{4}+22x^{2}+4-5=0
Oduzmite 5 od obiju strana.
3x^{4}+22x^{2}-1=0
Oduzmite 5 od 4 da biste dobili -1.
3t^{2}+22t-1=0
Zamijenite t za x^{2}.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. U kvadratnoj formuli zamijenite 3 s a, 22 s b i -1 s c.
t=\frac{-22±4\sqrt{31}}{6}
Izračunajte.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
Riješite jednadžbu t=\frac{-22±4\sqrt{31}}{6} kad je ± plus i kad je ± minus.
x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-\sqrt{\frac{2\sqrt{31}-11}{3}}
Od x=t^{2}, rješenja su dohvaćena tako da procjena x=±\sqrt{t} za pozitivne t.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}