Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

4x^{2}-2x-1=0
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 4 s a, -2 s b i -1 s c.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 4\left(-1\right)}}{2\times 4}
Kvadrirajte -2.
x=\frac{-\left(-2\right)±\sqrt{4-16\left(-1\right)}}{2\times 4}
Pomnožite -4 i 4.
x=\frac{-\left(-2\right)±\sqrt{4+16}}{2\times 4}
Pomnožite -16 i -1.
x=\frac{-\left(-2\right)±\sqrt{20}}{2\times 4}
Dodaj 4 broju 16.
x=\frac{-\left(-2\right)±2\sqrt{5}}{2\times 4}
Izračunajte kvadratni korijen od 20.
x=\frac{2±2\sqrt{5}}{2\times 4}
Broj suprotan broju -2 jest 2.
x=\frac{2±2\sqrt{5}}{8}
Pomnožite 2 i 4.
x=\frac{2\sqrt{5}+2}{8}
Sada riješite jednadžbu x=\frac{2±2\sqrt{5}}{8} kad je ± plus. Dodaj 2 broju 2\sqrt{5}.
x=\frac{\sqrt{5}+1}{4}
Podijelite 2+2\sqrt{5} s 8.
x=\frac{2-2\sqrt{5}}{8}
Sada riješite jednadžbu x=\frac{2±2\sqrt{5}}{8} kad je ± minus. Oduzmite 2\sqrt{5} od 2.
x=\frac{1-\sqrt{5}}{4}
Podijelite 2-2\sqrt{5} s 8.
x=\frac{\sqrt{5}+1}{4} x=\frac{1-\sqrt{5}}{4}
Jednadžba je sada riješena.
4x^{2}-2x-1=0
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
4x^{2}-2x-1-\left(-1\right)=-\left(-1\right)
Dodajte 1 objema stranama jednadžbe.
4x^{2}-2x=-\left(-1\right)
Oduzimanje -1 samog od sebe dobiva se 0.
4x^{2}-2x=1
Oduzmite -1 od 0.
\frac{4x^{2}-2x}{4}=\frac{1}{4}
Podijelite obje strane sa 4.
x^{2}+\left(-\frac{2}{4}\right)x=\frac{1}{4}
Dijeljenjem s 4 poništava se množenje s 4.
x^{2}-\frac{1}{2}x=\frac{1}{4}
Skratite razlomak \frac{-2}{4} na najmanje vrijednosti tako da izlučite i poništite 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{4}+\left(-\frac{1}{4}\right)^{2}
Podijelite -\frac{1}{2}, koeficijent izraza x, s 2 da biste dobili -\frac{1}{4}. Zatim objema stranama jednadžbe pridodajte -\frac{1}{4} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{4}+\frac{1}{16}
Kvadrirajte -\frac{1}{4} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{5}{16}
Dodajte \frac{1}{4} broju \frac{1}{16} pronalaženjem zajedničkog nazivnika i zbrajanjem brojnika. Zatim pokratite razlomak ako je to moguće.
\left(x-\frac{1}{4}\right)^{2}=\frac{5}{16}
Faktor x^{2}-\frac{1}{2}x+\frac{1}{16}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x-\frac{1}{4}=\frac{\sqrt{5}}{4} x-\frac{1}{4}=-\frac{\sqrt{5}}{4}
Pojednostavnite.
x=\frac{\sqrt{5}+1}{4} x=\frac{1-\sqrt{5}}{4}
Dodajte \frac{1}{4} objema stranama jednadžbe.