Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

3x^{2}+6x=8
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
3x^{2}+6x-8=8-8
Oduzmite 8 od obiju strana jednadžbe.
3x^{2}+6x-8=0
Oduzimanje 8 samog od sebe dobiva se 0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-8\right)}}{2\times 3}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 3 s a, 6 s b i -8 s c.
x=\frac{-6±\sqrt{36-4\times 3\left(-8\right)}}{2\times 3}
Kvadrirajte 6.
x=\frac{-6±\sqrt{36-12\left(-8\right)}}{2\times 3}
Pomnožite -4 i 3.
x=\frac{-6±\sqrt{36+96}}{2\times 3}
Pomnožite -12 i -8.
x=\frac{-6±\sqrt{132}}{2\times 3}
Dodaj 36 broju 96.
x=\frac{-6±2\sqrt{33}}{2\times 3}
Izračunajte kvadratni korijen od 132.
x=\frac{-6±2\sqrt{33}}{6}
Pomnožite 2 i 3.
x=\frac{2\sqrt{33}-6}{6}
Sada riješite jednadžbu x=\frac{-6±2\sqrt{33}}{6} kad je ± plus. Dodaj -6 broju 2\sqrt{33}.
x=\frac{\sqrt{33}}{3}-1
Podijelite -6+2\sqrt{33} s 6.
x=\frac{-2\sqrt{33}-6}{6}
Sada riješite jednadžbu x=\frac{-6±2\sqrt{33}}{6} kad je ± minus. Oduzmite 2\sqrt{33} od -6.
x=-\frac{\sqrt{33}}{3}-1
Podijelite -6-2\sqrt{33} s 6.
x=\frac{\sqrt{33}}{3}-1 x=-\frac{\sqrt{33}}{3}-1
Jednadžba je sada riješena.
3x^{2}+6x=8
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
\frac{3x^{2}+6x}{3}=\frac{8}{3}
Podijelite obje strane sa 3.
x^{2}+\frac{6}{3}x=\frac{8}{3}
Dijeljenjem s 3 poništava se množenje s 3.
x^{2}+2x=\frac{8}{3}
Podijelite 6 s 3.
x^{2}+2x+1^{2}=\frac{8}{3}+1^{2}
Podijelite 2, koeficijent izraza x, s 2 da biste dobili 1. Zatim objema stranama jednadžbe pridodajte 1 na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}+2x+1=\frac{8}{3}+1
Kvadrirajte 1.
x^{2}+2x+1=\frac{11}{3}
Dodaj \frac{8}{3} broju 1.
\left(x+1\right)^{2}=\frac{11}{3}
Faktor x^{2}+2x+1. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{11}{3}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x+1=\frac{\sqrt{33}}{3} x+1=-\frac{\sqrt{33}}{3}
Pojednostavnite.
x=\frac{\sqrt{33}}{3}-1 x=-\frac{\sqrt{33}}{3}-1
Oduzmite 1 od obiju strana jednadžbe.