Prijeđi na glavni sadržaj
Faktor
Tick mark Image
Izračunaj
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

a+b=5 ab=3\times 2=6
Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao 3x^{2}+ax+bx+2. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
1,6 2,3
Budući da je ab pozitivni, a i b imaju isti znak. Budući da je a+b pozitivni, a i b su pozitivni. Navedi sve kao cijeli broj koji daje 6 proizvoda.
1+6=7 2+3=5
Izračunaj zbroj za svaki par.
a=2 b=3
Rješenje je par koji daje zbroj 5.
\left(3x^{2}+2x\right)+\left(3x+2\right)
Izrazite 3x^{2}+5x+2 kao \left(3x^{2}+2x\right)+\left(3x+2\right).
x\left(3x+2\right)+3x+2
Izlučite x iz 3x^{2}+2x.
\left(3x+2\right)\left(x+1\right)
Faktor uobičajeni termin 3x+2 korištenjem distribucije svojstva.
3x^{2}+5x+2=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 3\times 2}}{2\times 3}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-5±\sqrt{25-4\times 3\times 2}}{2\times 3}
Kvadrirajte 5.
x=\frac{-5±\sqrt{25-12\times 2}}{2\times 3}
Pomnožite -4 i 3.
x=\frac{-5±\sqrt{25-24}}{2\times 3}
Pomnožite -12 i 2.
x=\frac{-5±\sqrt{1}}{2\times 3}
Dodaj 25 broju -24.
x=\frac{-5±1}{2\times 3}
Izračunajte kvadratni korijen od 1.
x=\frac{-5±1}{6}
Pomnožite 2 i 3.
x=-\frac{4}{6}
Sada riješite jednadžbu x=\frac{-5±1}{6} kad je ± plus. Dodaj -5 broju 1.
x=-\frac{2}{3}
Skratite razlomak \frac{-4}{6} na najmanje vrijednosti tako da izlučite i poništite 2.
x=-\frac{6}{6}
Sada riješite jednadžbu x=\frac{-5±1}{6} kad je ± minus. Oduzmite 1 od -5.
x=-1
Podijelite -6 s 6.
3x^{2}+5x+2=3\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-1\right)\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite -\frac{2}{3} s x_{1} i -1 s x_{2}.
3x^{2}+5x+2=3\left(x+\frac{2}{3}\right)\left(x+1\right)
Pojednostavnite sve izraze obrasca p-\left(-q\right) na p+q.
3x^{2}+5x+2=3\times \frac{3x+2}{3}\left(x+1\right)
Dodajte \frac{2}{3} broju x pronalaženjem zajedničkog nazivnika i zbrajanjem brojnika. Zatim pokratite razlomak ako je to moguće.
3x^{2}+5x+2=\left(3x+2\right)\left(x+1\right)
Poništite najveći zajednički djelitelj 3 u vrijednostima 3 i 3.