Faktor
-x\left(x-3\right)\left(x+1\right)
Izračunaj
-x\left(x-3\right)\left(x+1\right)
Grafikon
Dijeliti
Kopirano u međuspremnik
x\left(3+2x-x^{2}\right)
Izlučite x.
-x^{2}+2x+3
Razmotrite 3+2x-x^{2}. Preuredite polinom da biste ga pretvorili u standardan oblik. Poredajte izraze redoslijedom od najvećeg do najmanjeg eksponenta.
a+b=2 ab=-3=-3
Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao -x^{2}+ax+bx+3. Da biste pronašli a i b, postavite sustav koji treba riješiti.
a=3 b=-1
Budući da je ab negativan, a i b imaju suprotne znakove. Budući da je a+b pozitivan, pozitivni broj ima veću apsolutnu vrijednost od negativnog. Jedini je takav par sistemsko rješenje.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Izrazite -x^{2}+2x+3 kao \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Izlučite -x iz prve i -1 iz druge grupe.
\left(x-3\right)\left(-x-1\right)
Izlučite zajednički izraz x-3 pomoću svojstva distribucije.
x\left(x-3\right)\left(-x-1\right)
Prepravljanje čitavog izraza rastavljenog na faktore.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}