Prijeđi na glavni sadržaj
Izračunaj x (complex solution)
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

3x^{2}-2x+1=0
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3}}{2\times 3}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 3 s a, -2 s b i 1 s c.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3}}{2\times 3}
Kvadrirajte -2.
x=\frac{-\left(-2\right)±\sqrt{4-12}}{2\times 3}
Pomnožite -4 i 3.
x=\frac{-\left(-2\right)±\sqrt{-8}}{2\times 3}
Dodaj 4 broju -12.
x=\frac{-\left(-2\right)±2\sqrt{2}i}{2\times 3}
Izračunajte kvadratni korijen od -8.
x=\frac{2±2\sqrt{2}i}{2\times 3}
Broj suprotan broju -2 jest 2.
x=\frac{2±2\sqrt{2}i}{6}
Pomnožite 2 i 3.
x=\frac{2+2\sqrt{2}i}{6}
Sada riješite jednadžbu x=\frac{2±2\sqrt{2}i}{6} kad je ± plus. Dodaj 2 broju 2i\sqrt{2}.
x=\frac{1+\sqrt{2}i}{3}
Podijelite 2+2i\sqrt{2} s 6.
x=\frac{-2\sqrt{2}i+2}{6}
Sada riješite jednadžbu x=\frac{2±2\sqrt{2}i}{6} kad je ± minus. Oduzmite 2i\sqrt{2} od 2.
x=\frac{-\sqrt{2}i+1}{3}
Podijelite 2-2i\sqrt{2} s 6.
x=\frac{1+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i+1}{3}
Jednadžba je sada riješena.
3x^{2}-2x+1=0
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
3x^{2}-2x+1-1=-1
Oduzmite 1 od obiju strana jednadžbe.
3x^{2}-2x=-1
Oduzimanje 1 samog od sebe dobiva se 0.
\frac{3x^{2}-2x}{3}=-\frac{1}{3}
Podijelite obje strane sa 3.
x^{2}-\frac{2}{3}x=-\frac{1}{3}
Dijeljenjem s 3 poništava se množenje s 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
Podijelite -\frac{2}{3}, koeficijent izraza x, s 2 da biste dobili -\frac{1}{3}. Zatim objema stranama jednadžbe pridodajte -\frac{1}{3} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{1}{3}+\frac{1}{9}
Kvadrirajte -\frac{1}{3} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{2}{9}
Dodajte -\frac{1}{3} broju \frac{1}{9} pronalaženjem zajedničkog nazivnika i zbrajanjem brojnika. Zatim pokratite razlomak ako je to moguće.
\left(x-\frac{1}{3}\right)^{2}=-\frac{2}{9}
Faktor x^{2}-\frac{2}{3}x+\frac{1}{9}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{2}{9}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x-\frac{1}{3}=\frac{\sqrt{2}i}{3} x-\frac{1}{3}=-\frac{\sqrt{2}i}{3}
Pojednostavnite.
x=\frac{1+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i+1}{3}
Dodajte \frac{1}{3} objema stranama jednadžbe.