Izračunaj x
x=\frac{\sqrt{7}}{7}\approx 0,377964473
x=-\frac{\sqrt{7}}{7}\approx -0,377964473
Grafikon
Dijeliti
Kopirano u međuspremnik
2x^{2}\times 7=2
Pomnožite x i x da biste dobili x^{2}.
14x^{2}=2
Pomnožite 2 i 7 da biste dobili 14.
x^{2}=\frac{2}{14}
Podijelite obje strane sa 14.
x^{2}=\frac{1}{7}
Skratite razlomak \frac{2}{14} na najmanje vrijednosti tako da izlučite i poništite 2.
x=\frac{\sqrt{7}}{7} x=-\frac{\sqrt{7}}{7}
Izračunajte kvadratni korijen obiju strana jednadžbe.
2x^{2}\times 7=2
Pomnožite x i x da biste dobili x^{2}.
14x^{2}=2
Pomnožite 2 i 7 da biste dobili 14.
14x^{2}-2=0
Oduzmite 2 od obiju strana.
x=\frac{0±\sqrt{0^{2}-4\times 14\left(-2\right)}}{2\times 14}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 14 s a, 0 s b i -2 s c.
x=\frac{0±\sqrt{-4\times 14\left(-2\right)}}{2\times 14}
Kvadrirajte 0.
x=\frac{0±\sqrt{-56\left(-2\right)}}{2\times 14}
Pomnožite -4 i 14.
x=\frac{0±\sqrt{112}}{2\times 14}
Pomnožite -56 i -2.
x=\frac{0±4\sqrt{7}}{2\times 14}
Izračunajte kvadratni korijen od 112.
x=\frac{0±4\sqrt{7}}{28}
Pomnožite 2 i 14.
x=\frac{\sqrt{7}}{7}
Sada riješite jednadžbu x=\frac{0±4\sqrt{7}}{28} kad je ± plus.
x=-\frac{\sqrt{7}}{7}
Sada riješite jednadžbu x=\frac{0±4\sqrt{7}}{28} kad je ± minus.
x=\frac{\sqrt{7}}{7} x=-\frac{\sqrt{7}}{7}
Jednadžba je sada riješena.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}