Faktor
\left(x-3\right)\left(2x+1\right)
Izračunaj
\left(x-3\right)\left(2x+1\right)
Grafikon
Dijeliti
Kopirano u međuspremnik
2x^{2}-5x-3
Pomnožite i kombinirajte ekvivalentne algebarske izraze.
a+b=-5 ab=2\left(-3\right)=-6
Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao 2x^{2}+ax+bx-3. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
1,-6 2,-3
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivne vrijednosti. Navedi sve kao cijeli broj koji daje -6 proizvoda.
1-6=-5 2-3=-1
Izračunaj zbroj za svaki par.
a=-6 b=1
Rješenje je par koji daje zbroj -5.
\left(2x^{2}-6x\right)+\left(x-3\right)
Izrazite 2x^{2}-5x-3 kao \left(2x^{2}-6x\right)+\left(x-3\right).
2x\left(x-3\right)+x-3
Izlučite 2x iz 2x^{2}-6x.
\left(x-3\right)\left(2x+1\right)
Faktor uobičajeni termin x-3 korištenjem distribucije svojstva.
2x^{2}-5x-3
Kombinirajte -2x i -3x da biste dobili -5x.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}