Izračunaj x
x = \frac{\sqrt{41} + 1}{4} \approx 1,850781059
x=\frac{1-\sqrt{41}}{4}\approx -1,350781059
Grafikon
Dijeliti
Kopirano u međuspremnik
2x^{2}-x=5
Oduzmite x od obiju strana.
2x^{2}-x-5=0
Oduzmite 5 od obiju strana.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-5\right)}}{2\times 2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 2 s a, -1 s b i -5 s c.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-5\right)}}{2\times 2}
Pomnožite -4 i 2.
x=\frac{-\left(-1\right)±\sqrt{1+40}}{2\times 2}
Pomnožite -8 i -5.
x=\frac{-\left(-1\right)±\sqrt{41}}{2\times 2}
Dodaj 1 broju 40.
x=\frac{1±\sqrt{41}}{2\times 2}
Broj suprotan broju -1 jest 1.
x=\frac{1±\sqrt{41}}{4}
Pomnožite 2 i 2.
x=\frac{\sqrt{41}+1}{4}
Sada riješite jednadžbu x=\frac{1±\sqrt{41}}{4} kad je ± plus. Dodaj 1 broju \sqrt{41}.
x=\frac{1-\sqrt{41}}{4}
Sada riješite jednadžbu x=\frac{1±\sqrt{41}}{4} kad je ± minus. Oduzmite \sqrt{41} od 1.
x=\frac{\sqrt{41}+1}{4} x=\frac{1-\sqrt{41}}{4}
Jednadžba je sada riješena.
2x^{2}-x=5
Oduzmite x od obiju strana.
\frac{2x^{2}-x}{2}=\frac{5}{2}
Podijelite obje strane sa 2.
x^{2}-\frac{1}{2}x=\frac{5}{2}
Dijeljenjem s 2 poništava se množenje s 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{1}{4}\right)^{2}
Podijelite -\frac{1}{2}, koeficijent izraza x, s 2 da biste dobili -\frac{1}{4}. Zatim objema stranama jednadžbe pridodajte -\frac{1}{4} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{5}{2}+\frac{1}{16}
Kvadrirajte -\frac{1}{4} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{41}{16}
Dodajte \frac{5}{2} broju \frac{1}{16} pronalaženjem zajedničkog nazivnika i zbrajanjem brojnika. Zatim pokratite razlomak ako je to moguće.
\left(x-\frac{1}{4}\right)^{2}=\frac{41}{16}
Faktor x^{2}-\frac{1}{2}x+\frac{1}{16}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x-\frac{1}{4}=\frac{\sqrt{41}}{4} x-\frac{1}{4}=-\frac{\sqrt{41}}{4}
Pojednostavnite.
x=\frac{\sqrt{41}+1}{4} x=\frac{1-\sqrt{41}}{4}
Dodajte \frac{1}{4} objema stranama jednadžbe.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}