Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

a+b=-1 ab=2\left(-6\right)=-12
Da biste riješili jednadžbu, grupiranjem rastavite lijevu stranu na faktore. Najprije je potrebno prepisati lijevu stranu kao 2x^{2}+ax+bx-6. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
1,-12 2,-6 3,-4
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivne vrijednosti. Navedi sve kao cijeli broj koji daje -12 proizvoda.
1-12=-11 2-6=-4 3-4=-1
Izračunaj zbroj za svaki par.
a=-4 b=3
Rješenje je par koji daje zbroj -1.
\left(2x^{2}-4x\right)+\left(3x-6\right)
Izrazite 2x^{2}-x-6 kao \left(2x^{2}-4x\right)+\left(3x-6\right).
2x\left(x-2\right)+3\left(x-2\right)
Faktor 2x u prvom i 3 u drugoj grupi.
\left(x-2\right)\left(2x+3\right)
Faktor uobičajeni termin x-2 korištenjem distribucije svojstva.
x=2 x=-\frac{3}{2}
Da biste pronašli rješenja jednadžbe, riješite x-2=0 i 2x+3=0.
2x^{2}-x-6=0
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 2 s a, -1 s b i -6 s c.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
Pomnožite -4 i 2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
Pomnožite -8 i -6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Dodaj 1 broju 48.
x=\frac{-\left(-1\right)±7}{2\times 2}
Izračunajte kvadratni korijen od 49.
x=\frac{1±7}{2\times 2}
Broj suprotan broju -1 jest 1.
x=\frac{1±7}{4}
Pomnožite 2 i 2.
x=\frac{8}{4}
Sada riješite jednadžbu x=\frac{1±7}{4} kad je ± plus. Dodaj 1 broju 7.
x=2
Podijelite 8 s 4.
x=-\frac{6}{4}
Sada riješite jednadžbu x=\frac{1±7}{4} kad je ± minus. Oduzmite 7 od 1.
x=-\frac{3}{2}
Skratite razlomak \frac{-6}{4} na najmanje vrijednosti tako da izlučite i poništite 2.
x=2 x=-\frac{3}{2}
Jednadžba je sada riješena.
2x^{2}-x-6=0
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
2x^{2}-x-6-\left(-6\right)=-\left(-6\right)
Dodajte 6 objema stranama jednadžbe.
2x^{2}-x=-\left(-6\right)
Oduzimanje -6 samog od sebe dobiva se 0.
2x^{2}-x=6
Oduzmite -6 od 0.
\frac{2x^{2}-x}{2}=\frac{6}{2}
Podijelite obje strane sa 2.
x^{2}-\frac{1}{2}x=\frac{6}{2}
Dijeljenjem s 2 poništava se množenje s 2.
x^{2}-\frac{1}{2}x=3
Podijelite 6 s 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
Podijelite -\frac{1}{2}, koeficijent izraza x, s 2 da biste dobili -\frac{1}{4}. Zatim objema stranama jednadžbe pridodajte -\frac{1}{4} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Kvadrirajte -\frac{1}{4} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Dodaj 3 broju \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
Faktor x^{2}-\frac{1}{2}x+\frac{1}{16}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
Pojednostavnite.
x=2 x=-\frac{3}{2}
Dodajte \frac{1}{4} objema stranama jednadžbe.