Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Faktor
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

2\times \frac{\sqrt{1}}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
Ponovno napišite kvadratni korijen dijeljenja \sqrt{\frac{1}{27}} kao dijeljenje kvadrata korijena \frac{\sqrt{1}}{\sqrt{27}}.
2\times \frac{1}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
Izračunajte 2. korijen od 1 da biste dobili 1.
2\times \frac{1}{3\sqrt{3}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
Rastavite 27=3^{2}\times 3 na faktore. Ponovno napišite kvadratni korijen proizvoda \sqrt{3^{2}\times 3} kao umnožak kvadrata korijena \sqrt{3^{2}}\sqrt{3}. Izračunajte kvadratni korijen od 3^{2}.
2\times \frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
Racionalizirajte nazivnik \frac{1}{3\sqrt{3}} množenje brojnik i nazivnik \sqrt{3}.
2\times \frac{\sqrt{3}}{3\times 3}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
Kvadrat od \sqrt{3} je 3.
2\times \frac{\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
Pomnožite 3 i 3 da biste dobili 9.
\frac{2\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
Izrazite 2\times \frac{\sqrt{3}}{9} kao jedan razlomak.
\frac{2\sqrt{3}}{9}-\frac{2}{3}\times 3\sqrt{2}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
Rastavite 18=3^{2}\times 2 na faktore. Ponovno napišite kvadratni korijen proizvoda \sqrt{3^{2}\times 2} kao umnožak kvadrata korijena \sqrt{3^{2}}\sqrt{2}. Izračunajte kvadratni korijen od 3^{2}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
Skraćivanje 3 i 3.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{\sqrt{4}}{\sqrt{3}}-4\sqrt{\frac{1}{2}}
Ponovno napišite kvadratni korijen dijeljenja \sqrt{\frac{4}{3}} kao dijeljenje kvadrata korijena \frac{\sqrt{4}}{\sqrt{3}}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2}{\sqrt{3}}-4\sqrt{\frac{1}{2}}
Izračunajte 2. korijen od 4 da biste dobili 2.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-4\sqrt{\frac{1}{2}}
Racionalizirajte nazivnik \frac{2}{\sqrt{3}} množenje brojnik i nazivnik \sqrt{3}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-4\sqrt{\frac{1}{2}}
Kvadrat od \sqrt{3} je 3.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{1}}{\sqrt{2}}
Ponovno napišite kvadratni korijen dijeljenja \sqrt{\frac{1}{2}} kao dijeljenje kvadrata korijena \frac{\sqrt{1}}{\sqrt{2}}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-4\times \frac{1}{\sqrt{2}}
Izračunajte 2. korijen od 1 da biste dobili 1.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Racionalizirajte nazivnik \frac{1}{\sqrt{2}} množenje brojnik i nazivnik \sqrt{2}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{2}}{2}
Kvadrat od \sqrt{2} je 2.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-2\sqrt{2}
Poništite najveći zajednički djelitelj 2 u vrijednostima 4 i 2.
\frac{2\sqrt{3}}{9}-4\sqrt{2}-\frac{2\sqrt{3}}{3}
Kombinirajte -2\sqrt{2} i -2\sqrt{2} da biste dobili -4\sqrt{2}.
\frac{2\sqrt{3}}{9}+\frac{9\left(-4\right)\sqrt{2}}{9}-\frac{2\sqrt{3}}{3}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite -4\sqrt{2} i \frac{9}{9}.
\frac{2\sqrt{3}+9\left(-4\right)\sqrt{2}}{9}-\frac{2\sqrt{3}}{3}
Budući da \frac{2\sqrt{3}}{9} i \frac{9\left(-4\right)\sqrt{2}}{9} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2\sqrt{3}-36\sqrt{2}}{9}-\frac{2\sqrt{3}}{3}
Pomnožite izraz 2\sqrt{3}+9\left(-4\right)\sqrt{2}.
\frac{2\sqrt{3}-36\sqrt{2}}{9}-\frac{3\times 2\sqrt{3}}{9}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva 9 i 3 jest 9. Pomnožite \frac{2\sqrt{3}}{3} i \frac{3}{3}.
\frac{2\sqrt{3}-36\sqrt{2}-3\times 2\sqrt{3}}{9}
Budući da \frac{2\sqrt{3}-36\sqrt{2}}{9} i \frac{3\times 2\sqrt{3}}{9} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{2\sqrt{3}-36\sqrt{2}-6\sqrt{3}}{9}
Pomnožite izraz 2\sqrt{3}-36\sqrt{2}-3\times 2\sqrt{3}.
\frac{-4\sqrt{3}-36\sqrt{2}}{9}
Izračunajte izraz 2\sqrt{3}-36\sqrt{2}-6\sqrt{3}.