Izračunaj x
x\leq -\frac{44}{15}
Grafikon
Dijeliti
Kopirano u međuspremnik
12\left(x+5\right)\leq \frac{4}{5}\times 31
Pomnožite obje strane s 31. Budući da je 31 pozitivni, smjer nejednadžbe ostaje isti.
12x+60\leq \frac{4}{5}\times 31
Koristite svojstvo distributivnosti da biste pomnožili 12 s x+5.
12x+60\leq \frac{4\times 31}{5}
Izrazite \frac{4}{5}\times 31 kao jedan razlomak.
12x+60\leq \frac{124}{5}
Pomnožite 4 i 31 da biste dobili 124.
12x\leq \frac{124}{5}-60
Oduzmite 60 od obiju strana.
12x\leq \frac{124}{5}-\frac{300}{5}
Pretvorite 60 u razlomak \frac{300}{5}.
12x\leq \frac{124-300}{5}
Budući da \frac{124}{5} i \frac{300}{5} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
12x\leq -\frac{176}{5}
Oduzmite 300 od 124 da biste dobili -176.
x\leq \frac{-\frac{176}{5}}{12}
Podijelite obje strane sa 12. Budući da je 12 pozitivni, smjer nejednadžbe ostaje isti.
x\leq \frac{-176}{5\times 12}
Izrazite \frac{-\frac{176}{5}}{12} kao jedan razlomak.
x\leq \frac{-176}{60}
Pomnožite 5 i 12 da biste dobili 60.
x\leq -\frac{44}{15}
Skratite razlomak \frac{-176}{60} na najmanje vrijednosti tako da izlučite i poništite 4.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}