Izračunaj r
r = \frac{\sqrt{10990}}{70} \approx 1,497617155
r = -\frac{\sqrt{10990}}{70} \approx -1,497617155
Dijeliti
Kopirano u međuspremnik
3150r^{2}=7065
Pomnožite 105 i 30 da biste dobili 3150.
r^{2}=\frac{7065}{3150}
Podijelite obje strane sa 3150.
r^{2}=\frac{157}{70}
Skratite razlomak \frac{7065}{3150} na najmanje vrijednosti tako da izlučite i poništite 45.
r=\frac{\sqrt{10990}}{70} r=-\frac{\sqrt{10990}}{70}
Izračunajte kvadratni korijen obiju strana jednadžbe.
3150r^{2}=7065
Pomnožite 105 i 30 da biste dobili 3150.
3150r^{2}-7065=0
Oduzmite 7065 od obiju strana.
r=\frac{0±\sqrt{0^{2}-4\times 3150\left(-7065\right)}}{2\times 3150}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 3150 s a, 0 s b i -7065 s c.
r=\frac{0±\sqrt{-4\times 3150\left(-7065\right)}}{2\times 3150}
Kvadrirajte 0.
r=\frac{0±\sqrt{-12600\left(-7065\right)}}{2\times 3150}
Pomnožite -4 i 3150.
r=\frac{0±\sqrt{89019000}}{2\times 3150}
Pomnožite -12600 i -7065.
r=\frac{0±90\sqrt{10990}}{2\times 3150}
Izračunajte kvadratni korijen od 89019000.
r=\frac{0±90\sqrt{10990}}{6300}
Pomnožite 2 i 3150.
r=\frac{\sqrt{10990}}{70}
Sada riješite jednadžbu r=\frac{0±90\sqrt{10990}}{6300} kad je ± plus.
r=-\frac{\sqrt{10990}}{70}
Sada riješite jednadžbu r=\frac{0±90\sqrt{10990}}{6300} kad je ± minus.
r=\frac{\sqrt{10990}}{70} r=-\frac{\sqrt{10990}}{70}
Jednadžba je sada riješena.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}