Izračunaj
\frac{594016}{27}\approx 22000,592592593
Faktor
\frac{2 ^ {5} \cdot 19 \cdot 977}{3 ^ {3}} = 22000\frac{16}{27} = 22000,59259259259
Dijeliti
Kopirano u međuspremnik
\frac{30000+2}{3}-4000-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Pomnožite 10000 i 3 da biste dobili 30000.
\frac{30002}{3}-4000-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Dodajte 30000 broju 2 da biste dobili 30002.
\frac{30002}{3}-\frac{12000}{3}-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Pretvorite 4000 u razlomak \frac{12000}{3}.
\frac{30002-12000}{3}-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Budući da \frac{30002}{3} i \frac{12000}{3} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{18002}{3}-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Oduzmite 12000 od 30002 da biste dobili 18002.
\frac{162018}{27}-\frac{8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Najmanji zajednički višekratnik brojeva 3 i 27 je 27. Pretvorite \frac{18002}{3} i \frac{8}{27} u razlomak s nazivnikom 27.
\frac{162018-8}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Budući da \frac{162018}{27} i \frac{8}{27} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{162010}{27}-8000-\frac{4}{9}+\frac{24000\times 3+2}{3}
Oduzmite 8 od 162018 da biste dobili 162010.
\frac{162010}{27}-\frac{216000}{27}-\frac{4}{9}+\frac{24000\times 3+2}{3}
Pretvorite 8000 u razlomak \frac{216000}{27}.
\frac{162010-216000}{27}-\frac{4}{9}+\frac{24000\times 3+2}{3}
Budući da \frac{162010}{27} i \frac{216000}{27} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
-\frac{53990}{27}-\frac{4}{9}+\frac{24000\times 3+2}{3}
Oduzmite 216000 od 162010 da biste dobili -53990.
-\frac{53990}{27}-\frac{12}{27}+\frac{24000\times 3+2}{3}
Najmanji zajednički višekratnik brojeva 27 i 9 je 27. Pretvorite -\frac{53990}{27} i \frac{4}{9} u razlomak s nazivnikom 27.
\frac{-53990-12}{27}+\frac{24000\times 3+2}{3}
Budući da -\frac{53990}{27} i \frac{12}{27} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
-\frac{54002}{27}+\frac{24000\times 3+2}{3}
Oduzmite 12 od -53990 da biste dobili -54002.
-\frac{54002}{27}+\frac{72000+2}{3}
Pomnožite 24000 i 3 da biste dobili 72000.
-\frac{54002}{27}+\frac{72002}{3}
Dodajte 72000 broju 2 da biste dobili 72002.
-\frac{54002}{27}+\frac{648018}{27}
Najmanji zajednički višekratnik brojeva 27 i 3 je 27. Pretvorite -\frac{54002}{27} i \frac{72002}{3} u razlomak s nazivnikom 27.
\frac{-54002+648018}{27}
Budući da -\frac{54002}{27} i \frac{648018}{27} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{594016}{27}
Dodajte -54002 broju 648018 da biste dobili 594016.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}