Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

a+b=1 ab=-6=-6
Da biste riješili jednadžbu, grupiranjem rastavite lijevu stranu na faktore. Najprije je potrebno prepisati lijevu stranu kao -x^{2}+ax+bx+6. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
-1,6 -2,3
Budući da je ab negativan, a i b suprotnu znakovi. Budući da je a+b pozitivan, pozitivni broj ima veću apsolutnu vrijednost od negativnog. Navedi sve kao cijeli broj koji daje -6 proizvoda.
-1+6=5 -2+3=1
Izračunaj zbroj za svaki par.
a=3 b=-2
Rješenje je par koji daje zbroj 1.
\left(-x^{2}+3x\right)+\left(-2x+6\right)
Izrazite -x^{2}+x+6 kao \left(-x^{2}+3x\right)+\left(-2x+6\right).
-x\left(x-3\right)-2\left(x-3\right)
Faktor -x u prvom i -2 u drugoj grupi.
\left(x-3\right)\left(-x-2\right)
Faktor uobičajeni termin x-3 korištenjem distribucije svojstva.
x=3 x=-2
Da biste pronašli rješenja jednadžbe, riješite x-3=0 i -x-2=0.
-x^{2}+x+6=0
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite -1 s a, 1 s b i 6 s c.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
Kvadrirajte 1.
x=\frac{-1±\sqrt{1+4\times 6}}{2\left(-1\right)}
Pomnožite -4 i -1.
x=\frac{-1±\sqrt{1+24}}{2\left(-1\right)}
Pomnožite 4 i 6.
x=\frac{-1±\sqrt{25}}{2\left(-1\right)}
Dodaj 1 broju 24.
x=\frac{-1±5}{2\left(-1\right)}
Izračunajte kvadratni korijen od 25.
x=\frac{-1±5}{-2}
Pomnožite 2 i -1.
x=\frac{4}{-2}
Sada riješite jednadžbu x=\frac{-1±5}{-2} kad je ± plus. Dodaj -1 broju 5.
x=-2
Podijelite 4 s -2.
x=-\frac{6}{-2}
Sada riješite jednadžbu x=\frac{-1±5}{-2} kad je ± minus. Oduzmite 5 od -1.
x=3
Podijelite -6 s -2.
x=-2 x=3
Jednadžba je sada riješena.
-x^{2}+x+6=0
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
-x^{2}+x+6-6=-6
Oduzmite 6 od obiju strana jednadžbe.
-x^{2}+x=-6
Oduzimanje 6 samog od sebe dobiva se 0.
\frac{-x^{2}+x}{-1}=-\frac{6}{-1}
Podijelite obje strane sa -1.
x^{2}+\frac{1}{-1}x=-\frac{6}{-1}
Dijeljenjem s -1 poništava se množenje s -1.
x^{2}-x=-\frac{6}{-1}
Podijelite 1 s -1.
x^{2}-x=6
Podijelite -6 s -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Podijelite -1, koeficijent izraza x, s 2 da biste dobili -\frac{1}{2}. Zatim objema stranama jednadžbe pridodajte -\frac{1}{2} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Kvadrirajte -\frac{1}{2} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Dodaj 6 broju \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Faktor x^{2}-x+\frac{1}{4}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Pojednostavnite.
x=3 x=-2
Dodajte \frac{1}{2} objema stranama jednadžbe.