Prijeđi na glavni sadržaj
Faktor
Tick mark Image
Izračunaj
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

-x^{2}+3x+2=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 2}}{2\left(-1\right)}
Kvadrirajte 3.
x=\frac{-3±\sqrt{9+4\times 2}}{2\left(-1\right)}
Pomnožite -4 i -1.
x=\frac{-3±\sqrt{9+8}}{2\left(-1\right)}
Pomnožite 4 i 2.
x=\frac{-3±\sqrt{17}}{2\left(-1\right)}
Dodaj 9 broju 8.
x=\frac{-3±\sqrt{17}}{-2}
Pomnožite 2 i -1.
x=\frac{\sqrt{17}-3}{-2}
Sada riješite jednadžbu x=\frac{-3±\sqrt{17}}{-2} kad je ± plus. Dodaj -3 broju \sqrt{17}.
x=\frac{3-\sqrt{17}}{2}
Podijelite -3+\sqrt{17} s -2.
x=\frac{-\sqrt{17}-3}{-2}
Sada riješite jednadžbu x=\frac{-3±\sqrt{17}}{-2} kad je ± minus. Oduzmite \sqrt{17} od -3.
x=\frac{\sqrt{17}+3}{2}
Podijelite -3-\sqrt{17} s -2.
-x^{2}+3x+2=-\left(x-\frac{3-\sqrt{17}}{2}\right)\left(x-\frac{\sqrt{17}+3}{2}\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite \frac{3-\sqrt{17}}{2} s x_{1} i \frac{3+\sqrt{17}}{2} s x_{2}.