Izračunaj x
x=8
x=2
Grafikon
Dijeliti
Kopirano u međuspremnik
x^{2}-10x+25-9=0
Upotrijebite binomni teorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} da biste proširili \left(x-5\right)^{2}.
x^{2}-10x+16=0
Oduzmite 9 od 25 da biste dobili 16.
a+b=-10 ab=16
Da biste riješili jednadžbu, rastavite x^{2}-10x+16 na faktore pomoću formule x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Da biste pronašli a i b, postavite sustav koji treba riješiti.
-1,-16 -2,-8 -4,-4
Budući da je ab pozitivan, a i b imaju isti znak. Budući da je a+b negativan, a i b su negativni. Navedite sve takve parove cijelih brojeva koji proizvode 16.
-1-16=-17 -2-8=-10 -4-4=-8
Izračunaj zbroj za svaki par.
a=-8 b=-2
Rješenje je par koji daje zbroj -10.
\left(x-8\right)\left(x-2\right)
Prepišite izraz \left(x+a\right)\left(x+b\right) rastavljen na faktore pomoću dobivenih vrijednosti.
x=8 x=2
Da biste pronašli rješenja jednadžbe, riješite x-8=0 i x-2=0.
x^{2}-10x+25-9=0
Upotrijebite binomni teorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} da biste proširili \left(x-5\right)^{2}.
x^{2}-10x+16=0
Oduzmite 9 od 25 da biste dobili 16.
a+b=-10 ab=1\times 16=16
Da biste riješili jednadžbu, grupiranjem rastavite lijevu stranu na faktore. Najprije je potrebno prepisati lijevu stranu kao x^{2}+ax+bx+16. Da biste pronašli a i b, postavite sustav koji treba riješiti.
-1,-16 -2,-8 -4,-4
Budući da je ab pozitivan, a i b imaju isti znak. Budući da je a+b negativan, a i b su negativni. Navedite sve takve parove cijelih brojeva koji proizvode 16.
-1-16=-17 -2-8=-10 -4-4=-8
Izračunaj zbroj za svaki par.
a=-8 b=-2
Rješenje je par koji daje zbroj -10.
\left(x^{2}-8x\right)+\left(-2x+16\right)
Izrazite x^{2}-10x+16 kao \left(x^{2}-8x\right)+\left(-2x+16\right).
x\left(x-8\right)-2\left(x-8\right)
Izlučite x iz prve i -2 iz druge grupe.
\left(x-8\right)\left(x-2\right)
Izlučite zajednički izraz x-8 pomoću svojstva distribucije.
x=8 x=2
Da biste pronašli rješenja jednadžbe, riješite x-8=0 i x-2=0.
x^{2}-10x+25-9=0
Upotrijebite binomni teorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} da biste proširili \left(x-5\right)^{2}.
x^{2}-10x+16=0
Oduzmite 9 od 25 da biste dobili 16.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 16}}{2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 1 s a, -10 s b i 16 s c.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 16}}{2}
Kvadrirajte -10.
x=\frac{-\left(-10\right)±\sqrt{100-64}}{2}
Pomnožite -4 i 16.
x=\frac{-\left(-10\right)±\sqrt{36}}{2}
Dodaj 100 broju -64.
x=\frac{-\left(-10\right)±6}{2}
Izračunajte kvadratni korijen od 36.
x=\frac{10±6}{2}
Broj suprotan broju -10 jest 10.
x=\frac{16}{2}
Sada riješite jednadžbu x=\frac{10±6}{2} kad je ± plus. Dodaj 10 broju 6.
x=8
Podijelite 16 s 2.
x=\frac{4}{2}
Sada riješite jednadžbu x=\frac{10±6}{2} kad je ± minus. Oduzmite 6 od 10.
x=2
Podijelite 4 s 2.
x=8 x=2
Jednadžba je sada riješena.
x^{2}-10x+25-9=0
Upotrijebite binomni teorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} da biste proširili \left(x-5\right)^{2}.
x^{2}-10x+16=0
Oduzmite 9 od 25 da biste dobili 16.
x^{2}-10x=-16
Oduzmite 16 od obiju strana. Sve oduzeto od nule daje isti broj s negativnim predznakom.
x^{2}-10x+\left(-5\right)^{2}=-16+\left(-5\right)^{2}
Podijelite -10, koeficijent izraza x, s 2 da biste dobili -5. Zatim objema stranama jednadžbe pridodajte -5 na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}-10x+25=-16+25
Kvadrirajte -5.
x^{2}-10x+25=9
Dodaj -16 broju 25.
\left(x-5\right)^{2}=9
Rastavite x^{2}-10x+25 na faktore. Općenito, kad je x^{2}+bx+c kvadratni broj, uvijek se može rastaviti na faktore kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{9}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x-5=3 x-5=-3
Pojednostavnite.
x=8 x=2
Dodajte 5 objema stranama jednadžbe.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}