Prijeđi na glavni sadržaj
Faktor
Tick mark Image
Izračunaj
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

a+b=12 ab=1\times 36=36
Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao x^{2}+ax+bx+36. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
1,36 2,18 3,12 4,9 6,6
Budući da je ab pozitivni, a i b imaju isti znak. Budući da je a+b pozitivni, a i b su pozitivni. Navedi sve kao cijeli broj koji daje 36 proizvoda.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Izračunaj zbroj za svaki par.
a=6 b=6
Rješenje je par koji daje zbroj 12.
\left(x^{2}+6x\right)+\left(6x+36\right)
Izrazite x^{2}+12x+36 kao \left(x^{2}+6x\right)+\left(6x+36\right).
x\left(x+6\right)+6\left(x+6\right)
Faktor x u prvom i 6 u drugoj grupi.
\left(x+6\right)\left(x+6\right)
Faktor uobičajeni termin x+6 korištenjem distribucije svojstva.
\left(x+6\right)^{2}
Ponovno napišite kao kvadrat binoma.
factor(x^{2}+12x+36)
Ovaj trinom ima oblik kvadrata trinoma, možda pomnoženog zajedničkim faktorom. Kvadrati trinoma mogu se faktorirati vađenjem kvadratnog korijena prvog i zadnjeg izraza.
\sqrt{36}=6
Pronađite kvadratni korijen drugog izraza, 36.
\left(x+6\right)^{2}
Kvadrat trinoma je kvadrat binoma koji je zbroj razlike kvadratnih korijena prvog i zadnjeg izraza, dok predznak određuje predznak srednjeg izraza u kvadratu trinoma.
x^{2}+12x+36=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
Kvadrirajte 12.
x=\frac{-12±\sqrt{144-144}}{2}
Pomnožite -4 i 36.
x=\frac{-12±\sqrt{0}}{2}
Dodaj 144 broju -144.
x=\frac{-12±0}{2}
Izračunajte kvadratni korijen od 0.
x^{2}+12x+36=\left(x-\left(-6\right)\right)\left(x-\left(-6\right)\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite -6 s x_{1} i -6 s x_{2}.
x^{2}+12x+36=\left(x+6\right)\left(x+6\right)
Pojednostavnite sve izraze obrasca p-\left(-q\right) na p+q.