Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

x^{2}+x-90=-78
Koristite svojstvo distributivnosti da biste pomnožili x+10 s x-9 i kombinirali slične izraze.
x^{2}+x-90+78=0
Dodajte 78 na obje strane.
x^{2}+x-12=0
Dodajte -90 broju 78 da biste dobili -12.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 1 s a, 1 s b i -12 s c.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
Kvadrirajte 1.
x=\frac{-1±\sqrt{1+48}}{2}
Pomnožite -4 i -12.
x=\frac{-1±\sqrt{49}}{2}
Dodaj 1 broju 48.
x=\frac{-1±7}{2}
Izračunajte kvadratni korijen od 49.
x=\frac{6}{2}
Sada riješite jednadžbu x=\frac{-1±7}{2} kad je ± plus. Dodaj -1 broju 7.
x=3
Podijelite 6 s 2.
x=-\frac{8}{2}
Sada riješite jednadžbu x=\frac{-1±7}{2} kad je ± minus. Oduzmite 7 od -1.
x=-4
Podijelite -8 s 2.
x=3 x=-4
Jednadžba je sada riješena.
x^{2}+x-90=-78
Koristite svojstvo distributivnosti da biste pomnožili x+10 s x-9 i kombinirali slične izraze.
x^{2}+x=-78+90
Dodajte 90 na obje strane.
x^{2}+x=12
Dodajte -78 broju 90 da biste dobili 12.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Podijelite 1, koeficijent izraza x, s 2 da biste dobili \frac{1}{2}. Zatim objema stranama jednadžbe pridodajte \frac{1}{2} na kvadrat. Tim korakom lijeva strana jednadžbe postaje potpuna kvadratna jednadžba.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
Kvadrirajte \frac{1}{2} tako da kvadrirate brojnik i nazivnik razlomka.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Dodaj 12 broju \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Faktor x^{2}+x+\frac{1}{4}. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Pojednostavnite.
x=3 x=-4
Oduzmite \frac{1}{2} od obiju strana jednadžbe.