Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 3x i \frac{3x}{3x}.
\left(\frac{3x\times 3x-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Budući da \frac{3x\times 3x}{3x} i \frac{1}{3x} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\left(\frac{9x^{2}-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Pomnožite izraz 3x\times 3x-1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Da biste izračunali \frac{9x^{2}-1}{3x} na neku potenciju, potencirajte i brojnik i nazivnik te ih podijelite.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(\frac{3x\times 3x}{3x}+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 3x i \frac{3x}{3x}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{3x\times 3x+1}{3x}\left(3x-\frac{1}{3x}\right)
Budući da \frac{3x\times 3x}{3x} i \frac{1}{3x} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(3x-\frac{1}{3x}\right)
Pomnožite izraz 3x\times 3x+1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 3x i \frac{3x}{3x}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{3x\times 3x-1}{3x}
Budući da \frac{3x\times 3x}{3x} i \frac{1}{3x} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{9x^{2}-1}{3x}
Pomnožite izraz 3x\times 3x-1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x\times 3x}
Pomnožite \frac{9x^{2}+1}{3x} i \frac{9x^{2}-1}{3x} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x^{2}\times 3}
Pomnožite x i x da biste dobili x^{2}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Pomnožite 3 i 3 da biste dobili 9.
\frac{\left(9x^{2}-1\right)^{2}}{9x^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Proširivanje broja \left(3x\right)^{2}.
\frac{\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Budući da \frac{\left(9x^{2}-1\right)^{2}}{9x^{2}} i \frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1}{9x^{2}}
Pomnožite izraz \left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right).
\frac{-18x^{2}+2}{9x^{2}}
Kombinirajte slične izraze u 81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1.
\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 3x i \frac{3x}{3x}.
\left(\frac{3x\times 3x-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Budući da \frac{3x\times 3x}{3x} i \frac{1}{3x} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\left(\frac{9x^{2}-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Pomnožite izraz 3x\times 3x-1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Da biste izračunali \frac{9x^{2}-1}{3x} na neku potenciju, potencirajte i brojnik i nazivnik te ih podijelite.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(\frac{3x\times 3x}{3x}+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 3x i \frac{3x}{3x}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{3x\times 3x+1}{3x}\left(3x-\frac{1}{3x}\right)
Budući da \frac{3x\times 3x}{3x} i \frac{1}{3x} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(3x-\frac{1}{3x}\right)
Pomnožite izraz 3x\times 3x+1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 3x i \frac{3x}{3x}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{3x\times 3x-1}{3x}
Budući da \frac{3x\times 3x}{3x} i \frac{1}{3x} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{9x^{2}-1}{3x}
Pomnožite izraz 3x\times 3x-1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x\times 3x}
Pomnožite \frac{9x^{2}+1}{3x} i \frac{9x^{2}-1}{3x} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x^{2}\times 3}
Pomnožite x i x da biste dobili x^{2}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Pomnožite 3 i 3 da biste dobili 9.
\frac{\left(9x^{2}-1\right)^{2}}{9x^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Proširivanje broja \left(3x\right)^{2}.
\frac{\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Budući da \frac{\left(9x^{2}-1\right)^{2}}{9x^{2}} i \frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1}{9x^{2}}
Pomnožite izraz \left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right).
\frac{-18x^{2}+2}{9x^{2}}
Kombinirajte slične izraze u 81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1.