Izračunaj x
x=-\frac{1}{2}=-0,5
Grafikon
Dijeliti
Kopirano u međuspremnik
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Upotrijebite binomni teorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} da biste proširili \left(\frac{1}{3}x-\frac{1}{2}\right)^{3}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}x\right)^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Razmotrite \left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right). Umnožak se može pretvoriti u razliku kvadrata pomoću sljedećeg pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrirajte \frac{1}{2}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}\right)^{2}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Proširivanje broja \left(\frac{1}{3}x\right)^{2}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{9}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Izračunajte koliko je 2 na \frac{1}{3} da biste dobili \frac{1}{9}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\frac{1}{9}x^{2}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Da biste pronašli suprotnu vrijednost izraza \frac{1}{9}x^{2}-\frac{1}{4}, pronađite suprotnu verziju svakog člana.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x-\frac{1}{8}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Kombinirajte -\frac{1}{6}x^{2} i -\frac{1}{9}x^{2} da biste dobili -\frac{5}{18}x^{2}.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Dodajte -\frac{1}{8} broju \frac{1}{4} da biste dobili \frac{1}{8}.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{27}x^{3}+\frac{5}{18}x^{2}=0
Koristite svojstvo distributivnosti da biste pomnožili -\frac{1}{9}x^{2} s \frac{1}{3}x-\frac{5}{2}.
-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}+\frac{5}{18}x^{2}=0
Kombinirajte \frac{1}{27}x^{3} i -\frac{1}{27}x^{3} da biste dobili 0.
\frac{1}{4}x+\frac{1}{8}=0
Kombinirajte -\frac{5}{18}x^{2} i \frac{5}{18}x^{2} da biste dobili 0.
\frac{1}{4}x=-\frac{1}{8}
Oduzmite \frac{1}{8} od obiju strana. Sve oduzeto od nule daje isti broj s negativnim predznakom.
x=-\frac{1}{8}\times 4
Pomnožite obje strane s 4, recipročnim izrazom od \frac{1}{4}.
x=-\frac{1}{2}
Pomnožite -\frac{1}{8} i 4 da biste dobili -\frac{1}{2}.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}