Prijeđi na glavni sadržaj
Izračunaj x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

x^{2}-120x+3600=0
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 3600}}{2}
Ova je jednadžba u standardnom obliku: ax^{2}+bx+c=0. U kvadratnoj jednadžbi \frac{-b±\sqrt{b^{2}-4ac}}{2a} zamijenite 1 s a, -120 s b i 3600 s c.
x=\frac{-\left(-120\right)±\sqrt{14400-4\times 3600}}{2}
Kvadrirajte -120.
x=\frac{-\left(-120\right)±\sqrt{14400-14400}}{2}
Pomnožite -4 i 3600.
x=\frac{-\left(-120\right)±\sqrt{0}}{2}
Dodaj 14400 broju -14400.
x=-\frac{-120}{2}
Izračunajte kvadratni korijen od 0.
x=\frac{120}{2}
Broj suprotan broju -120 jest 120.
x=60
Podijelite 120 s 2.
x^{2}-120x+3600=0
Kvadratne jednadžbe poput ove mogu se riješiti računanjem kvadrata. Da bi se izračunao kvadrat, jednadžba mora biti u obliku x^{2}+bx=c.
\left(x-60\right)^{2}=0
Faktor x^{2}-120x+3600. Općenito, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uzeti u obzir kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-60\right)^{2}}=\sqrt{0}
Izračunajte kvadratni korijen obiju strana jednadžbe.
x-60=0 x-60=0
Pojednostavnite.
x=60 x=60
Dodajte 60 objema stranama jednadžbe.
x=60
Jednadžba je sada riješena. Rješenja su jednaka.