Izračunaj
6\sqrt{5}-\sqrt{10}\approx 10,254130205
Faktor
6 \sqrt{5} - \sqrt{10} = 10,254130205
Dijeliti
Kopirano u međuspremnik
\sqrt{30}\times \frac{3}{2}\sqrt{\frac{6+2}{3}}-2\sqrt{\frac{2\times 2+1}{2}}
Pomnožite 2 i 3 da biste dobili 6.
\sqrt{30}\times \frac{3}{2}\sqrt{\frac{8}{3}}-2\sqrt{\frac{2\times 2+1}{2}}
Dodajte 6 broju 2 da biste dobili 8.
\sqrt{30}\times \frac{3}{2}\times \frac{\sqrt{8}}{\sqrt{3}}-2\sqrt{\frac{2\times 2+1}{2}}
Ponovno napišite kvadratni korijen dijeljenja \sqrt{\frac{8}{3}} kao dijeljenje kvadrata korijena \frac{\sqrt{8}}{\sqrt{3}}.
\sqrt{30}\times \frac{3}{2}\times \frac{2\sqrt{2}}{\sqrt{3}}-2\sqrt{\frac{2\times 2+1}{2}}
Rastavite 8=2^{2}\times 2 na faktore. Ponovno napišite kvadratni korijen proizvoda \sqrt{2^{2}\times 2} kao umnožak kvadrata korijena \sqrt{2^{2}}\sqrt{2}. Izračunajte kvadratni korijen od 2^{2}.
\sqrt{30}\times \frac{3}{2}\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-2\sqrt{\frac{2\times 2+1}{2}}
Racionalizirajte nazivnik \frac{2\sqrt{2}}{\sqrt{3}} množenje brojnik i nazivnik \sqrt{3}.
\sqrt{30}\times \frac{3}{2}\times \frac{2\sqrt{2}\sqrt{3}}{3}-2\sqrt{\frac{2\times 2+1}{2}}
Kvadrat od \sqrt{3} je 3.
\sqrt{30}\times \frac{3}{2}\times \frac{2\sqrt{6}}{3}-2\sqrt{\frac{2\times 2+1}{2}}
Da biste pomnožite \sqrt{2} i \sqrt{3}, pomnožite brojeve u kvadratnim korijenu.
\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}-2\sqrt{\frac{2\times 2+1}{2}}
Izrazite \sqrt{30}\times \frac{2\sqrt{6}}{3} kao jedan razlomak.
\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}-2\sqrt{\frac{4+1}{2}}
Pomnožite 2 i 2 da biste dobili 4.
\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}-2\sqrt{\frac{5}{2}}
Dodajte 4 broju 1 da biste dobili 5.
\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}-2\times \frac{\sqrt{5}}{\sqrt{2}}
Ponovno napišite kvadratni korijen dijeljenja \sqrt{\frac{5}{2}} kao dijeljenje kvadrata korijena \frac{\sqrt{5}}{\sqrt{2}}.
\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}-2\times \frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Racionalizirajte nazivnik \frac{\sqrt{5}}{\sqrt{2}} množenje brojnik i nazivnik \sqrt{2}.
\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}-2\times \frac{\sqrt{5}\sqrt{2}}{2}
Kvadrat od \sqrt{2} je 2.
\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}-2\times \frac{\sqrt{10}}{2}
Da biste pomnožite \sqrt{5} i \sqrt{2}, pomnožite brojeve u kvadratnim korijenu.
\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}-\sqrt{10}
Skraćivanje 2 i 2.
\frac{\sqrt{6}\sqrt{5}\times 2\sqrt{6}}{3}\times \frac{3}{2}-\sqrt{10}
Rastavite 30=6\times 5 na faktore. Ponovno napišite kvadratni korijen proizvoda \sqrt{6\times 5} kao umnožak kvadrata korijena \sqrt{6}\sqrt{5}.
\frac{6\times 2\sqrt{5}}{3}\times \frac{3}{2}-\sqrt{10}
Pomnožite \sqrt{6} i \sqrt{6} da biste dobili 6.
\frac{12\sqrt{5}}{3}\times \frac{3}{2}-\sqrt{10}
Pomnožite 6 i 2 da biste dobili 12.
4\sqrt{5}\times \frac{3}{2}-\sqrt{10}
Podijelite 12\sqrt{5} s 3 da biste dobili 4\sqrt{5}.
\frac{4\times 3}{2}\sqrt{5}-\sqrt{10}
Izrazite 4\times \frac{3}{2} kao jedan razlomak.
\frac{12}{2}\sqrt{5}-\sqrt{10}
Pomnožite 4 i 3 da biste dobili 12.
6\sqrt{5}-\sqrt{10}
Podijelite 12 s 2 da biste dobili 6.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}