Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

\int 3x^{3}-x^{2}+2x-4\mathrm{d}x
Prvo procijenite beskonačni integral.
\int 3x^{3}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -4\mathrm{d}x
Integrirajte zbroj termina po terminu.
3\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Izbacite konstantu u svakom od izraza.
\frac{3x^{4}}{4}-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{3}\mathrm{d}x s \frac{x^{4}}{4}. Pomnožite 3 i \frac{x^{4}}{4}.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}. Pomnožite -1 i \frac{x^{3}}{3}.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+x^{2}+\int -4\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x\mathrm{d}x s \frac{x^{2}}{2}. Pomnožite 2 i \frac{x^{2}}{2}.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+x^{2}-4x
Pronađite integral -4 pomoću tablice uobičajene integrali pravila \int a\mathrm{d}x=ax.
\frac{3}{4}\times 1^{4}-\frac{1^{3}}{3}+1^{2}-4-\left(\frac{3}{4}\times 0^{4}-\frac{0^{3}}{3}+0^{2}-4\times 0\right)
Konačni integral je antiderivat izraza izračunatog u gornjoj granici integracije minus antiderivat izračunat u donjoj granici integracije.
-\frac{31}{12}
Pojednostavnite.