Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Diferenciraj u odnosu na x
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

\int 2x^{5}\mathrm{d}x+\int 4x^{3}\mathrm{d}x+\int -3x\mathrm{d}x+\int 8\mathrm{d}x
Integrirajte zbroj termina po terminu.
2\int x^{5}\mathrm{d}x+4\int x^{3}\mathrm{d}x-3\int x\mathrm{d}x+\int 8\mathrm{d}x
Izbacite konstantu u svakom od izraza.
\frac{x^{6}}{3}+4\int x^{3}\mathrm{d}x-3\int x\mathrm{d}x+\int 8\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{5}\mathrm{d}x s \frac{x^{6}}{6}. Pomnožite 2 i \frac{x^{6}}{6}.
\frac{x^{6}}{3}+x^{4}-3\int x\mathrm{d}x+\int 8\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{3}\mathrm{d}x s \frac{x^{4}}{4}. Pomnožite 4 i \frac{x^{4}}{4}.
\frac{x^{6}}{3}+x^{4}-\frac{3x^{2}}{2}+\int 8\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x\mathrm{d}x s \frac{x^{2}}{2}. Pomnožite -3 i \frac{x^{2}}{2}.
\frac{x^{6}}{3}+x^{4}-\frac{3x^{2}}{2}+8x
Pronađite integral 8 pomoću tablice uobičajene integrali pravila \int a\mathrm{d}x=ax.
\frac{x^{6}}{3}+x^{4}-\frac{3x^{2}}{2}+8x+С
Ako je F\left(x\right) antiderivat f\left(x\right), skup svih antiderivata f\left(x\right) je dan u F\left(x\right)+C. Stoga dodajte konstantu integracije C\in \mathrm{R} rezultatu.